
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISTRIBUTED FAULT-TOLERANT QUALITY OF SERVICE ROUTING IN 
HYBRID DIRECTIONAL WIRELESS NETWORKS  

 
 

THESIS 
 
 

Larry C. Llewellyn II, Captain, USAF 
 

AFIT/GE/ENG/07-15 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the U.S. 

Government. 



 

AFIT/GE/ENG/07-15 

 

DISTRIBUTED FAULT-TOLERANT QUALITY OF SERVICE ROUTING IN 
HYBRID DIRECTIONAL WIRELESS NETWORKS 

 
THESIS 

 
Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Electrical Engineering 

 

 

Larry C. Llewellyn II, BS 

Captain, USAF 

 

March 2007 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED





 

iv 

AFIT/GE/ENG/07-15 

Abstract 

A hybrid mobile ad hoc network (H-MANET) consists of a group of 

communicating hosts that form an arbitrary network topology by means of any of several 

wireless communication media – E.g., free space optics (i.e., infrared laser light), or 

directional radio frequency technology.  H-MANET communications represent a 

diversification in communication technology necessary to solve the stringent end-to-end 

requirements of the GIG. Of the many challenges in this complex distributed system, the 

problem of routing based on a predefined set of customer preferences, critical to 

guaranteeing quality-of-service, is the focus of this research. Specifically, this thesis 

modifies a cluster based QoS routing algorithm for mobile ad hoc networks with the aim 

of providing fault-tolerance – a critical feature in providing QoS in the link failure prone 

environment of mobile networks.  Performance of this new fault-tolerant cluster based 

QoS wireless algorithm is evaluated according to failure recovery time, dropped packets, 

throughput, and sustained flow bandwidth via simulations involving various node failure 

scenarios along QoS paths. 
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DISTRIBUTED FAULT-TOLERANT QUALITY OF SERVICE ROUTING IN 
HYBRID DIRECTIONAL WIRELESS NETWORKS 

 
I.Introduction 

1.1 Background 

This chapter gives a general introduction to the research subject area and an 

overview of the problem focused on.  This section provides motivation for this particular 

problem and why it is significant. Additionally, in this chapter states the research goal 

and presents an overview of the remaining document. 

Department of Defense Directive 8100.2 (DoDD 8100.2, April 14, 2004) defines  

the Global Information Grid (GIG) as “…the globally interconnected, end-to-end set of 

information capabilities, associated processes, and personnel for collecting, processing, 

storing, disseminating, and managing information on demand to warfighters, policy 

makers, and support personnel”[11].  Network Operations (NetOps) provides guidance on 

the essential tasks, Situational Awareness (SA), Command and Control (C2) that the 

Commander United States Strategic Command (CDRUSSTRATCOM) will use to 

operate and defend the GIG through the Defense Information Systems Agency (DISA) – 

a component of United States Strategic Command[5].  A significant function of NetOps 

is to provide assured net-centric services in support of information superiority – the key 

enabler to achieve ‘Full Spectrum Dominance’ as outlined in Joint Vision 2020.  Hence, 

NetOps is CDRUSSTRATCOM’s realization of DoDD 8100.2. DISA’s vision 

specifically describes the provided service as global net-centric solutions as follows; 

“…the provider of global net-centric solutions for the Nation’s warfighters and all those 
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who support them in the defense of the nation” [24].  The take-away from DoDD 8100.2, 

NetOps and the DISA vision is that the GIG is expected to be the globally operating 

distributed system which will bring this net-centric blueprint to fruition. 

‘Net-centricity’, as described by the DoD, is a robust, globally interconnected 

network infrastructure with the ability to provide the right information to the right person 

at the right place at the right time.  Similarly, DoDD 8320.2 states that “Net-Centric 

Warfare (NCW) is an information superiority-enabled concept of operations that 

generates increased combat power by networking sensors, decision makers, and shooters 

to achieve shared awareness, increased speed of command, higher tempo of operations, 

greater lethality, increased survivability, and a degree of self-synchronization” [10].  This 

forward thinking on the part of civilian and military leadership, a fundamental shift from 

platform-centric computing to network-centric information resource sharing, has 

permeated all aspects of DoD leased, owned, and operated information systems.  As 

Alberts and Stein stated, “In essence, net-centric warfare translates information 

superiority into combat power by effectively linking knowledgeable entities in the battle 

space”[2]. 

The synergistic effect of combining net-centric computing with SA, will have a 

dramatic positive impact on mission effectiveness for all DoD functional areas.  Enabling 

this type of power has far reaching technological implications. That is, to provide the 

warfighter with the access to relevant data as described by the NCW concept, the 

associated network will must be dynamic and robust with the ability to reach any location 
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on the globe. Moreover, this network must be able to provide the user with the quality-of-

service (QoS) necessary to accomplish the associated mission. 

Generally speaking, QoS is a defined level of performance in a data 

communications network required by a particular type of network traffic.  For example, 

the United States military has recently been field-testing ruggedized versions of common 

personal digital assistants (PDAs) that have the capability to send and receive tremendous 

amounts of data.  If these devices are to send and receive multimedia traffic, the GIG 

must provide a certain level of QoS for this multimedia application to be functional.  

More detailed consideration of QoS and its implications is provided in Chapter Two of 

this document. 

As deployed military units are inherently mobile and generally do not have an 

existing infrastructure with which to connect, the ad hoc implementation of IEEE 802.11, 

or similar wireless standard, appears to be well suited for this dynamic application. On 

the contrary, the bandwidth limitations and poor scalability of this omni-directional 

communication protocol limit its use in the deployed military environment.  Conversely, 

the combination of free space optic transceivers with high-bandwidth directional 

broadcast radio frequency technology provide the hybrid communication technologies 

which can be used to construct the global, dynamic, QoS capable network implicitly 

described by DoDD 8100.2.  Hybrid mobile ad hoc network (H-MANET) 

communications represent a diversification in communication technology necessary to 

solve the stringent end-to-end requirements of the GIG. Hence, the H-MANET inherits 
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positive attributes of the MANET while avoiding limiting characteristics attributable to 

homogeneity and omni-directionality.  

Much of this research is a natural extension of the MANET.  That is, the models 

and protocols that exist for the MANET are considered and, when beneficial, are adapted 

to the H-MANET.  Additionally, the assumption is made that each node in the H-

MANET has an 802.11 transceiver as well as directional communication interfaces.  The 

purpose for this 802.11 functionality will be evident later.  The H-MANET is primarily 

envisioned as an augmentation to the communication technologies employed at the 

network edge, providing connectivity between the fixed GIG infrastructure and mobile 

military units as well as intra/inter connectivity among these mobile military units.  The 

H-MANET is therefore not ‘ad hoc’ in the true sense, but instead a pseudo ad hoc 

network which shares characteristics of both fixed and ad hoc networks.  This research 

assumes nodes in the H-MANET have multifarious communication interfaces, each 

having the capability to send and receive data via one of several communication media.  

Throughout this thesis, when H-MANET is used this is the implied framework.  Note that 

problems related to determining directional antenna positioning are not considered here.  

It should also be noted that although the H-MANET (depending on the employed 

communication technology) exhibits many important qualities which make it desirable 

over standard homogeneous wireless networks (i.e., low power consumption, low 

probability of interception, etc) the primary characteristic referenced in this work is 

bandwidth. 
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1.2 Problem Statement 

An illustrative scenario supported by the GIG might be transmission of real-time 

surveillance video capturing terrorist leadership activity.  The purpose of this surveillance 

data could be preparation for imminent aggressive maneuvers against this enemy target.  

Imagine that the video transmission is being sent from an embedded covert team to 

decision makers at DoD headquarters.  These two communicating blue forces would also 

likely require the ability to transmit or receive additional data such as voice and position.  

Positioning and location update data can be handled well in a best-effort network such as 

the Internet; however, in order to supply the warfighters in this scenario with the 

capability to send and receive reliable real-time video and voice packets, the involved 

network must be able to provide a certain level of QoS.  

Consider the network for this application implemented such that the traffic is 

routed via any available communication technology able to provide the necessary 

bandwidth and low probability of interception.  Further, given the location, traffic 

requirements, and the potential network dynamics, the optimum involved communication 

hardware might be a mix of the wireless directional technologies currently employed by 

the United States Armed Forces.  For example, the remote covert team sends its 

transmission up to a circling cluster of Predator UAVs (far enough away that they are 

undetectable), which sends the traffic to a forward deployed convoy.  The convoy then 

transmits the signal up to a satellite via an International Marine/Maritime Satellite 

(INMARSAT) transmitter.  Finally, the satellite forwards the data on to DoD 

headquarters. The path from DoD headquarters back to the covert team follows the same 
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route in reverse.  Consequently, this scenario represents an ad hoc hybrid directional 

wireless network which has the task of supplying QoS in an effort to provide the right 

information to the right place at the right time.  

 

 

 

Figure 1.1. Illustrative scenario supported by the GIG 

 

This is but one of countless scenarios which could take advantage of the 

information resources of the GIG as it has been defined in DoDD 8100.2.  This thesis 

addresses three main inter-related problems associated with the intrinsically complex 
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communication paradigm illustrated here and any like it involving multimedia traffic in a 

mobile network with intermediate connecting nodes.  These three problems are briefly 

described in the following paragraphs.  

The first problem deals with scalability.  In the types of ad hoc hybrid directional 

wireless networks described so far, in order to determine feasible routes, nodes must be 

aware of what resources are available.  With most ad hoc wireless networks that support 

QoS, each node functions not only as a source or destination but also as a router.  In the 

standard distributed reactive routing implementation, if a node does not know the QoS 

parameters of its neighbors it broadcasts the route request packet and the neighboring 

nodes share their QoS parameters using the broadcast packets.  Therefore, nodes discover 

the QoS parameters of their neighbors and negotiate the QoS path via broadcasts.  These 

broadcast packets have the potential to flood the network.  A clustered approach to the ad 

hoc QoS network can lower this unnecessary communication overhead to a more scalable 

level by limiting inter-cluster routing control communication to gateway nodes only.  In 

this way, only small fraction of network nodes sends routing control packets, thereby 

significantly reducing communication requirements.  It is important to note here that it is 

assumed all nodes in the H-MANET have 802.11 transceivers, which are used primarily 

for the purpose of cluster construction and dissemination of available resource 

information.  

The second problem deals with QoS routing directly.  Multi-constrained routing is 

NP-complete[30].  In one heuristic, the QoS routing paradigm can be modeled as a 

multicommodity flow problem where flow priorities, user preferences and link 
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characteristics are used to compute an optimal set of paths.  This process is very similar 

to multi-protocol label switching technology, except that in this instance, flows are 

allowed to split, whereas with multi-protocol label switching this is generally not the 

case.  This transformation from multi-constrained routing to the multicommodity flow 

problem allows the solution to be found in polynomial time.  More detail on this 

methodology is presented in Chapter Two of this document.  

The third problem in the described scenario and the primary focus of this research 

is minimizing QoS impact in the face of network failures.  That is, if a supporting 

intermediate node along the connection from the covert team to DoD headquarters should 

fail or move, what actions should the network take?  More specifically, if the traffic is 

routed such that it passes through multiple nodes in the convoy (i.e., the data must be 

routed through several convoy nodes before it can be uplinked to the satellite via the 

INMARSAT) and one of the supporting convoy nodes fail, how does the network 

respond?  In the worst case, if the network has no built in protocol to respond to this link 

breakage, the connection will have to be rerouted from the source and QoS will have to 

be re-established.  This global fault-tolerance method means the source will have to re-

compute and renegotiate a new QoS path which, depending on the network size, could be 

costly in terms of computation and communication time necessary for path negotiation 

(negotiation includes implementation of the new path).  Further, if the situation were such 

that multiple sources were using the failed node in their QoS path, each affected source 

must re-compute and negotiate a new path.  Despite being costly, research suggests that 

this method of handling failures is commonplace for this category of data networks.  
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Conversely, if a fault-tolerant algorithm is implemented which makes it possible for the 

intermediate nodes (i.e., the convoy nodes in this example) to efficiently repair the failed 

connection locally; it is likely that the associated connections will suffer only a minor 

disruption, if any.  This mitigated disruption time could easily mean the difference 

between receiving time sensitive, mission critical information, or not.  The research in 

this thesis demonstrates that a solid, local fault-tolerant algorithm has significant benefits 

over the standard practice of rerouting from the source for QoS traffic. 

1.3 Preview 

In summary, with an efficient distributed fault-tolerant protocol, QoS disruption 

time can be significantly mitigated for the QoS supporting mobile ad hoc network.  It is 

proposed that a cluster based scheme holds great promise as the framework for a 

distributed protocol to address the unique characteristics of the mobile ad hoc network. 

The focus of this research is to develop an efficient distributed fault-tolerant QoS routing 

algorithm suitable for the hybrid mobile ad hoc wireless network.  Note that this 

preliminary work is part of a larger effort to enable the robust H-MANET functionality 

described previously. 

This chapter covered a general introduction to the research subject area and an 

overview of the focus of this thesis.  Chapter Two presents introductory material on the 

QoS problem as it applies to wired networks and builds on this with the topic of QoS in 

the MANET.  The intent is for those with general knowledge in the broad subject matter 

to be able to understand the particular area of this research.  Chapter Two also contains 

an overview of literature that supports key design decisions in development of the 
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distributed fault-tolerant cluster based QoS protocol.  Chapter Three presents the 

developed fault-tolerant protocol.  Chapter Four documents the experimental 

methodology used in this research and presents the performance analysis of the 

competing algorithms.  Chapter Five concludes the document with a summary of results 

and recommendations for further research and development. 
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II.Literature Review 

2.1 Introduction 

This chapter presents a review of introductory material and related literature.  

First, a discussion of the general quality-of-service (QoS) routing problem is presented as 

it applies to wired networks.  This involves the presentation of a recent work exploring 

scalability in MPLS-based networks.  The general QoS routing discussion then leads into 

two heuristic algorithms with the primary goal of minimizing memory and runtime 

complexity for the multiconstrained QoS routing problem. 

This thesis focuses on fault-tolerance in the QoS supporting H-MANETs.  Since 

nodes in an H-MANET have the ability to send and receive omni-directional wireless 

traffic, we investigate the protocols and communication models associated with the 

MANET and applicable to fault-tolerance and QoS support.  The remainder of the 

chapter includes the following topics: 1) the MANET, its applications and the general ad 

hoc routing problem, 2) the QoS MANET model and associated QoS routing problem, 3) 

a fully distributed cluster based QoS routing method with a discussion of proposed 

modifications to enable improved QoS routing and fault-tolerance.  Finally, although 

little literature exists on the topic, two techniques applied to solve the fault-tolerant 

problem in the QoS supporting MANET are covered– the first involving a repair method 

comparable to the clustered protocol developed for this work and the second concerning a 

more network resource-demanding approach termed multi-level path redundancy.  
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2.2 Quality-of-Service Routing 

The Internet in general is based on a best-effort framework in which network 

traffic is sent and received without any guarantees on reliability, latency, or other quality 

metrics.  Despite that fundamental premise, the Internet is used today for various real-

time services, such as videoconferencing and voice-over-IP (VoIP). These applications 

require a certain quality of service if they are to be fully functional.  QoS is described by 

RFC2386 as a set of service requirements (e.g., bandwidth, delay, probability of packet 

loss, variation in delay or jitter, and so on) to be met by the network while transporting a 

flow associated with a particular application.  This implies a guarantee by the network to 

satisfy a predetermined service performance constraint for the user in terms of any 

combination of the previously mentioned network parameters (or others, as this is not an 

exhaustive list).  

The network can be modeled as a graph (N, E). N nodes of the graph represent 

switches, routers, and hosts. E edges represent communication links which are undirected 

and not necessarily symmetric; however, the example shown in Figure 2.1 assumes 

symmetric edges.  Every edge has a characteristic measured by the associated QoS metric 

(bandwidth, delay, etc) represented in the network.  Further, every node has state, which 

should be considered when determining a feasible path.  For example, the true link 

bandwidth is the minimum of the link bandwidth and the maximum rate the node can put 

data on to the link.  For the purposes of this study, the node states that affect the related 

link states are considered negligible.  Also, note that this research is primarily concerned 

with unicast routing.  



 

2-3 

 

 

Figure 2.1. QoS network illustrating link state 

QoS routing requests are specified in terms of constraints.  The multiconstrained 

path QoS routing problem involves finding routes that satisfy multiple independent QoS 

constraints.  Stated more formally, given a directed graph G(N, E), a source node src, a 

destination dst, k ≥ 2 weight functions w1 : E → R+, w2 : E → R+, …, wk : E → R+, k 

constants c1, c2, …, ck; the problem is to find a path p from src to dst such that wl(p) ≤ c1, 

…, wk(p) ≤ ck [30] (where k is the number of constraints and 1 ≤ l ≤ k).  An example of 2-

constrained routing is delay-packet loss constrained routing or finding a route with 

bounded end-to-end delay and bounded end-to-end packet loss probability.  After finding 

q 
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the feasible route, the second part of the QoS routing process is the task of reserving the 

required resources along this newly discovered route.  That is, the required bandwidth, 

queues, or other associated network resources needed to provide the required QoS must 

be set aside for use by the intended source.  Once the transmission is finished, these 

resources are released.  Additionally, the knowledge that these resources are in use must 

be tracked so that any potential user will have an accurate account of the available 

resources.  When the term QoS is used in this document it denotes calculating the route 

and reserving the associated resources along the calculated route. 

The multiconstrained QoS routing problem is difficult because different 

constraints can conflict with one another.  For example, a route may provide the required 

end-to-end delay and not be able to provide the necessary packet loss probability end-to-

end or vice versa.  Multiconstrained path QoS routing is known to be NP-hard [25].  

There are three general categories of QoS routing for wired networks: centralized routing, 

distributed routing and hierarchical routing. 

2.2.1 Quality-of-Service routing using centralized algorithms. 

Centralized algorithms employ a method known as source routing.  This scheme 

requires that the source maintain complete global state knowledge.  Consequently, the 

route computation is centralized at the source.  A link state protocol is used to 

periodically update the global state at all nodes in the network.  Some of the advantages 

to source routing are that it avoids the problems of distributed algorithms such as 

distributed state snapshot and deadlock detection; however, some major drawbacks are 

scalability and the requirement of an accurate account of the network’s state.  The global 
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network state at every node has to be updated frequently enough to cope with the 

dynamics of the network.  This has the potential to make communication overhead 

excessive for large networks.  As the network grows the problem of maintaining an 

accurate global network state becomes even more impractical.  In addition, with network 

growth comes increased overhead necessary to distribute this information and increased 

routing algorithm run time.  Furthermore, the memory requirement for each node 

becomes large as the network grows.  Even with the capacities available on today’s 

networks, this dissemination will take time, and during that time the state of the network 

will undoubtedly change.  The end result is that routing decisions will potentially be 

made based upon stale information.  Additionally, even if the network state information 

is accurately received, it is possible that the network topology will change during the 

route calculation process.  Lastly, in terms of computation time, since all route 

calculations are performed at the source, the routing algorithm used in this centralized 

scheme must factor in this resource limitation and therefore minimize computational 

complexity.  

2.2.2 Quality-of-Service routing using distributed routing algorithms. 

With distributed routing, algorithms can be made more scalable as the path 

computation is inherently distributed among the intermediate nodes between the source 

and the destination.  Many existing distributed algorithms execute routing decisions on a 

hop-by-hop basis, but rely on global network state information (like that necessary for 

centralized QoS routing algorithms).  As a result, these algorithms suffer scalability 

problems similar to source routing algorithms.  Distributed algorithms, which do not need 
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global state information and use only local state data, exist; however, they tend to send 

more overhead messages since their view of the network is incomplete.  These algorithms 

also suffer potential loops as network views may differ between nodes; however, loops 

can fairly easily detected when the routing message is received by a node for the second 

time.  It is also difficult to design efficient distributed heuristics for the multiconstrained 

routing problem in the absence of detailed topology and link state information.  

2.2.3 Quality-of-Service routing using hierarchical routing algorithms. 

Another routing methodology, hierarchical routing, exists which shares some of 

the advantages of both centralized and distributed routing.  Hierarchical routing has been 

employed in the past to solve the scalability problems noted with centralized routing. 

Improved scalability arises from the fact that each node only maintains a partial global 

state such that groups of nodes are aggregated into logical nodes.  The effect of this 

method is to create a logical network that is logarithmic in size compared to the actual 

network.  With this approach, a source routing algorithm can be employed at each 

hierarchical level to find feasible paths based on the aggregated states maintained at each 

node.  The disadvantage is that with this aggregated view of the network, the possibility 

of inaccuracy becomes a problem since it is possible that a logical node (aggregated 

group of nodes) may be a large complex network that is incorrectly represented.  The 

fundamental dilemma here is that aggregation of large complex networks into a logical 

node is a problem that has yet to be accurately solved [8]. 
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2.2.4 Flows and Flow Networks. 

A flow network is defined by the National Institute of Standards and Technology 

as “A weighted, directed graph with two specially marked nodes, the source s and the 

sink t, and a capacity function that maps edges to positive real numbers, c : E → R+” [19]. 

A flow network is modeled here as a connected, directed graph G = (V, E) (where V is the 

set of all nodes and E is the set of all edges) such that each edge (u, v) ∈  E has a capacity 

c(u, v) ≥ 0.  Further, in this directed graph, there are two special nodes – source s with 

only outflows and sink t with only inflows. A flow can then be defined as a real-valued 

function f: V x V → R that assigns flow values to the edges of a flow network, f(u, v).  

Moreover, this function must satisfy the following properties [9]: 

Flow conservation: For all nodes in the network, other than the source and 

destination, the incoming flow must be the same as the outgoing flow: 

{ },u V s t∀ ∈ − , ( , ) 0
u V

f u v
∈

=∑  [9] 

Capacity constraint: For all nodes in the network, the flow between two nodes 

must be less than, or equal to, the capacity of the connecting edge. 

u V∀ ∈ , ( , ) ( , )f u v c u v≤  [9] 

Skew Symmetry: For all nodes in the network, starting from either node of every 

edge, the flow is the same amount, but reversed direction (i.e. for an edge e 

connecting vertices u and v, the flow from u to v, f(u, v),  equals the negation of 

that  flow in the opposite direction -f(v, u). 

( , ) , ( , ) ( , )u v V f u v f v u∀ ∈ =−  [9] 
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2.2.5 Maximum flow and Multicommodity flow Problems. 

The maximum flow problem can be described as the task of finding the path in a 

flow network from a source to a destination which yields the flow of maximum value [9].  

The maximum flow problem can be considered a special case of the more complex multi-

commodity flow problem with a single commodity, namely the path capacity.  Several 

algorithms exist which solve the maximum flow problem in polynomial time.  One such 

algorithm is Edmunds-Karp, a specialization of the Ford-Fulkerson, which finds paths 

using a breadth first search and has a runtime complexity of O(VE2) [9] . 

As an illustration of the multicommodity flow problem, suppose that a 

manufacturing company builds widgets at their manufacturing plant in Dayton, OH and 

builds doodads at a facility in Fairfax, VA.  Further, the company has a storage facility 

for the widgets located in Charlotte, NC and another storage facility for doodads in 

Washington, DC.  Each item (widget and doodad) must be shipped each day from the 

factory to the associated storage facility.  The capacity of the shipping network (The 

Interstate System) is constant, and the different items (or commodities) must share the 

same network. In this problem, again there is a directed graph in which each edge has a 

non-negative capacity. At the heart of this problem is the idea that there are r different 

commodities, K1, K2, K3, …, Kr where commodity i is specified by Ki = (si, ti, di) such 

that si is the source of the commodity, ti is the commodity sink, and di is the desired flow 

value for commodity i from si to ti. A flow for commodity i, denoted by fi, (where fi(ui, vi) 

is the flow of commodity i from node ui to node vi) is defined here to be a real-valued 

function that satisfies the node conservation constraints.  Then the multicommodity flow 
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problem is to find flows from a source to a destination that satisfy the flow properties 

previously described (flow conservation, skew symmetry, and capacity) and meet some 

objective function criteria so that the sum of flows on any edge does not exceed the 

capacity of the edge. For the maximum multicommodity flow problem, the objective is to 

maximize the sum of the flows: max | |if∑  [13].  

2.2.6 Quality-of-Service routing using MPLS and Multicommodity Flows. 

Multi-Protocol Label Switching (MPLS) is an advanced forwarding QoS 

supporting scheme in which incoming packets are first assigned a label by a label edge 

router (LER).  Label switched routers then use these labels to forward packets along a 

label switched path.  The label switched paths are designed by network engineers for a 

variety of purposes ranging from guaranteeing a class of service to routing around 

congested links.  MPLS consists of a layer between the network layer and the data link 

layer.  MPLS, as described by RFC3031, generally uses multiconstrained routing in 

determining dynamic routes. The most popular construction of the QoS routing problem 

that implements multicommodity flows is based on the MPLS architecture in which a 

multicommodity flow optimization is performed where an objective function is 

minimized with respect to the types of flow subject to multicommodity flow constraints 

[20].  In essence, MPLS provides the mechanism for reserving a single path, while 

multicommodity flow optimization finds an optimal set of paths given multiple sets of 

commodities.  Multicommodity flow algorithms seek to minimize the objective function, 

e.g., number of hops, and will therefore choose routes along the shortest path. This 

optimal solution may split the flow along multiple paths of the network.  Most MPLS 
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routing protocols disallow flow splitting, and therefore may produce a less than optimal 

solution, if any.  Multicommodity flow algorithms inherently split flow because the 

continuous solution is solvable in polynomial time whereas an integer solution, which 

would not split flows, is not.  MPLS and other reservation schemes do not split flows, 

thereby avoiding increased router complexity (i.e., routers would have to route fractional 

flows).  

Mitra and Ramakrishnan [21] propose a ‘scalable’ technique which uses the 

multicommodity flow method for handling the QoS routing problem in a MPLS 

supported IP network.  With this technique emphasis is placed on scalability, which they 

maintain is the reason they use the multicommodity flow approach (opposed to 

multiconstrained routing).  Conversely, Applegate and Thorup [3] state that 

implementing the optimal multicommodity flow solution using the technique shown by 

Mitra and Ramakrishnan [21] has the potential to lead to exceedingly large routing tables, 

indeed, the worst case would be Θ(Destinations ×  Edges) entries. Applegate and Thorup 

[3] provide a supposed solution to this exorbitant memory requirement; however, their 

solution still requires an algorithm similar to Mitra and Ramakrishnan [21] as a “front-

end” that produces an optimal path (or set of optimal paths) which Applegate and Thorup 

then use as input to their algorithm.  Since Mitra and Ramakrishnan’s algorithm may 

require routing tables as large as Θ(Destinations ×  Edges) entries, Applegate and 

Thorup’s claim is only that “…given a good solution, we can implement with K ×  

(Destinations +  Edges) table entries” (where K is the number of traffic classes)[3].  

Hence, the memory implications involved with both solutions are prohibitive for the 
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MANET application and the fundamental question of whether or not the MPLS approach 

can scale for larger networks remains. 

2.2.7 Quality-of-Service routing using heuristic algorithms.  

Xin Yuan [30] proposes two heuristic algorithms for the multiconstrained QoS 

routing problem which deal with k ≥ 2 constraints.  These competing heuristics are 

applied to the extended Bellman-Ford algorithm (EBFA), which is a variation of the 

Constrained Bellman-Ford algorithm developed by Ron Widyono [29] to solve k-

constrained QoS routing problems (where k is a small constant).  For completeness, it is 

noted here that the original Bellman-Ford algorithm computes the shortest path in a 

weighted directed graph (where some of the edge weights may be negative).  The EBFA 

computes the feasible path given multiple constraints.  The following definitions are 

necessary to understand the functionality of EBFA shown in Figure 2.2: 

EBFA Definitions 

 PATH(u) – all optimal QoS paths found so far from the source src to u [30] 

 e = u → v – represents connecting edge e from node u to node v which has k 

independent weights [30] 

 w(u → v) – the k independent weights (w1(e), w2(e), …, wk(e)) used to represent 

the weights of a link from u to v [30] 

 c – the constraint vector for a given request (i.e., c = w1, w2, …, wk) [30] 

 for path p = v0 → v1 → v2 → … → vk (where kv V∈ ), wl(p) = 1
1

( )
k

l i i
i

w v v−
=

→∑  

and 1 ≤ l ≤ k  
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 w(p) ≤  w(q) denotes wl(p) ≤ wl(q) for all 1 ≤ l ≤ k  – therefore w(p) is the vector 

sum of all constraints of all edges in path p [30] 

(1) ( ) ( )
(2) 1
(3) ( ) ( )
(4) ( ( ) ( , ) ( )) 0
(5) ( ( ) ( , ) ( ) ( , ) ( )
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Figure 2.2. EBFA for the multiconstrained QoS routing problem [30] 

 Lines 1 through 3 of the BELLMAN-FORD() procedure initialize the algorithms 

variables.  Lines 4 thorough 6 of the BELLMAN-FORD() procedure call the RELAX() 

routine |V| ×  |E| times.  Once the RELAX() procedure returns, all optimal QoS paths 

from node src to dst are stored in the set PATH(dst). Lines 7 and 8 check whether there 

exists an optimal path that satisfies the QoS constraint.  

 On the RELAX() procedure, for the weight vector w(p) of each path p in PATH(u) 

from src to u and for the weight vector w(q) of each path q in PATH(v) from src to 
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destination v, if the current path is better or as good as the new path, keep the current 

path; otherwise put the new path in place of the current path. In terms of runtime/memory 

complexity the time and memory needed to execute the RELAX() procedure is dependent 

upon the number of optimal paths in the sets PATH(u) and PATH(v).  Since the number 

of optimal QoS paths from src to u and from src to v can be exponential with respect to 

the size of V and E, the runtime/memory requirement of EBFA may also grow 

exponentially [30]. 

The motivation of both Yuan heuristics is to limit the number of optimal QoS 

paths maintained in each node and thereby lower the runtime/memory complexity of the 

heuristics.  It should be mentioned that Xin Yuan’s paper considers centralized 

algorithms and assumes that the global network state information is accurate.  The first 

heuristic, the limited granularity heuristic, is guaranteed to obtain approximate solutions 

in polynomial time.  The general concept is to first reduce the NP-complete problem to a 

simpler one which can be solved in polynomial time.  This is done by making use of 

finite domains, such as bounded ranges of integer numbers, to approximate the infinite 

number of values that can be used to represent QoS parameters.  The proof that this 

method provides a correct solution for the k = 2 case is shown by Chen Shigang [27].  It 

should be noted that in Xin Yuan’s paper, the application is the general k-constrained 

routing problem instead of the 2-constrained problem.  The time complexity of the 

limited granularity heuristic is claimed to be O(|N|k|E|) for an N nodes and E edges 

network with k independent QoS constraints.  Given the time complexity of the limited 

granularity heuristic, it is no surprise that performance analysis of this heuristic shows it 
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is inefficient when k > 3 (algorithm runtime increases significantly with very small 

increases in k).  

Yuan’s second heuristic is the limited path heuristic.  In general, the method 

attempted with this algorithm is to focus on the cases that occur most frequently and 

solve these cases efficiently and effectively – this done by limiting the number of optimal 

QoS paths in each node.  The difficulty is in deciding what the value of the maximum 

number of optimal QoS paths in each node should be.  The paper goes on to show that if 

the number of QoS paths in each node is O(|N|2lg(|N|)) (where N is the set of nodes 

representing routers) the probability that all optimal QoS paths are recorded by the 

heuristic is high and hence the probability of finding the QoS path that satisfies the 

required constraints when such a path exists is high.  The performance of the limited path 

heuristic shows that it requires much less resources (memory and computation time) then 

the limited path heuristic.  It should also be noted that the limited granularity heuristic 

guarantees finding an approximate solution, while the limited path heuristic cannot 

provide such a guarantee.  The disadvantage of both heuristics is that they employ source 

routing which, as mentioned previously, has various negative scalability implications. 

2.3 Mobile ad hoc networking 

In a mobile ad hoc network (MANET), hosts have no network infrastructure with 

which to connect.  The MANET embodies a complex distributed system in which 

wireless mobile nodes can freely and dynamically organize into a temporary “ad-hoc” 

network topology, thereby allowing devices to build an internetwork in areas with no pre-

existing communication infrastructure.  Further, nodes have the ability to randomly 



 

2-15 

move, leave or join the network.  Hence, there is potential for the network topology to 

change often and in unpredictable ways.  The applications of this technology involve, but 

are not limited to conferences, classrooms, disaster-recovery and military tactical 

operations.  The advent of ad hoc networks is certainly not recent; however, the 

proliferation of wireless technologies such as 802.11 and Bluetooth® has brought this 

networking model to the forefront of many research projects.  In particular, multi-hop 

routing, one of the most important protocols in the MANET – enabling communication 

between nodes that are not directly connected – has experienced a significant amount of 

development.  Most of the protocols established for multi-hop routing set up and maintain 

best-effort routes.  In the following section, a short survey of these protocols is presented. 

2.4 Routing in the MANET 

In wired networks, significant topology changes are uncommon as the associated 

nodes are largely static.  Further, a specific subset of network nodes is provided for the 

primary purpose of routing packets.  On the contrary, in the MANET topology is 

expected to change and all network nodes cooperate to provide routing services.  The 

characteristics of the MANET (i.e., dynamic topology, bandwidth-constrained, variable 

capacity links, energy-constrained, scalability, etc) require a fundamental change in 

routing protocol design.  In this distributed unreliable environment, the available routing 

protocols can be categorized into three design paradigms – reactive on-demand routing, 

proactive table-driven routing and a proactive-reactive hybrid. 



 

2-16 

2.4.1 Proactive Routing. 

Proactive or table-driven protocols establish routes in advance.  Each node must 

maintain one or more tables to store the routing information.  Periodic updates propagate 

through out the network to account for link changes in the topology.  The advantage of 

this particular MANET routing scheme is that packets can be forwarded with very low 

latency since the paths are known a priori.  This has clear benefits for real-time traffic.  

The disadvantages are that potentially large amounts of bandwidth can be consumed by 

the continuous link updates.  Further, since much of the stored routing information will 

not be used, memory management is inefficient in this scheme.  To add to the challenge, 

memory requirements for the QoS routing problem will clearly be larger since more 

information is required for each stored path (i.e., link state information for all concerned 

QoS metrics for each edge in the network).  These disadvantages once again yield a 

scalability problem similar to that noted earlier for centralized QoS routing.  

Fisheye state routing (FSR) [16] is an example of a proactive routing protocol.  

FSR is a link state algorithm meaning each node (router) in the network builds a picture 

of the entire network in its routing table while determining network link state costs.  The 

exchange of information required to determine these network link state costs is 

expensive.  FSR handles this by updating network information for nearby nodes (within 

the fisheye) more frequently than for nodes more remote.  Therefore, given an arbitrary 

node i in the MANET, distance and path quality information will be more accurate for i 

within a certain range (number of hops).  As the distance from i increases, link state 

accuracy i has of the network decreases.  Using the fisheye analogy, the eye of a fish 
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captures with high detail the pixels near the focal point.  The detail decreases as the 

distance from the focal point increases.  Due to this distance dependent link state 

accuracy, FSR is an implicitly hierarchical routing protocol.  The tradeoff is improved 

scalability when compared with typical link state protocols. 

Figure 2.3 illustrates the fisheye protocol in a MANET.  The different colored 

circles define the different sets of nodes, or scopes, the center node (node 11) can reach 

within a given number of hops. In this case, three scopes are illustrated – yellow is one 

hop, blue is two hops and white is any number of hops greater than two.  So with this 

example, nodes in scope one will receive more frequent link state updates than those in 

scope two and nodes in scope two will receive more frequent updates than those in scope 

three.  The result is a significant reduction in message size since a large fraction of link 

state entries are not sent in a typical update.  Imprecise knowledge of the best path to a 

distant destination is compensated by the fact that the route becomes progressively more 

accurate as the packet gets closer to the destination.  Note that the number of levels and 

the radius of each scope will depend upon the size of the network.  Since FSR maintains a 

routing entry for each destination, the protocol avoids the route discovery problem of on-

demand protocols and can therefore maintain low packet transmission latency. 
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Figure 2.3. Fisheye example [16]  

2.4.2 Reactive Routing. 

Reactive routing protocols determine routes when requested or on-demand.  That 

is, when a packet needs to be forwarded a route discovery process is initiated by which 

the node floods the network with route-request packets.  Before the route request packet 

is forwarded, the host appends its address to the route record of the route request packet.  

When a node with a route to the destination is reached, a route reply packet is sent back.  

In the worst case, the packet is forwarded all the way to the destination.  If links are bi-

directional, the route reply will traverse the same path in the opposite direction back to 

the source.  If the links are not bi-directional (i.e., one of the nodes along the discovered 

path cannot communicate with a preceding node perhaps due to a physical obstruction, 

power limitations, etc.) the path from the destination to the source will also have to be 
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discovered via flooding.  The advantage of reactive routing protocols is that bandwidth 

(and power) is conserved since constant periodic updates are not required.  The 

disadvantage is delayed packet forwarding since routes are discovered as needed.  Also, 

since reactive protocols are distributed, this drawback is the same as that noted previously 

for wired distributed QoS routing.  Additionally, the flooding process used during route 

discovery has the potential to strain the available network bandwidth if the volume of 

route requests is high.  

An example of a reactive routing protocol is dynamic source routing (DSR) [4]. 

DSR assumes all hosts are willing to forward packets for all other nodes.  DSR also 

assumes a small network diameter (i.e., the average minimum number of hops between 

any two nodes is small).  If the path to the destination is known, the sender first 

constructs a ‘source route’ in the packet header.  This source route contains the address of 

each host in the network through which the packet is forwarded to reach the destination.  

Each node in the network maintains a route cache containing the source routes that it 

knows about.  Nodes along the path monitor the operation of the route and inform the 

sender of any routing errors.  This cache is updated as the node learns of new routes.  If 

the path is not known, the route discovery procedure discussed above is executed. 

As average node mobility of the network increases, reactive routing produces 

better performance than proactive routing; however, as the number of connection requests 

increase proactive routing outperforms reactive routing.  The aim of hybrid routing is to 

strike a balance between these two opposing routing models.  With hybrid routing, paths 

to nodes within a specific distance are proactively maintained. Routes to destinations 
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outside of this area are reactively obtained.  The advantages of the hybrid routing design 

are improved scalability over pure proactive routing and less delay in route discovery for 

nearby nodes compared to reactive routing.  

2.4.3 Hybrid Routing. 

An example of hybrid routing is the zone routing protocol (ZRP) [23].  As the 

name suggests, ZRP divides the network into different zones.  Each node in the network 

has a local neighborhood whose size is defined by a radius length in number of hops.  A 

node proactively maintains routes to all other nodes in its neighborhood.  As an example, 

in Figure 2.4 node S is the central node, which has a neighborhood radius of two hops.  In 

this example L is outside the neighborhood zone while nodes A through F are all 

neighbors (in the zone). G through K are peripheral nodes or nodes at the extreme end of 

the zone; these nodes are the most distant destinations in the zone which S proactively 

maintains routes to.  It’s important to note that with ZRP each node may choose a 

different zone radius based on its signal strength, transmission power, mobility and so on.  
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Figure 2.4. Routing zone of radius two hops [23] 

ZRP uses the Intrazone Routing Protocol (IARP) to proactively find routes within 

the routing zone and Interzone Routing Protocol (IERP) combined with Bordercast 

Resolution Protocol (BRP) to reactively find routes beyond the routing zone.  In general, 

BRP is used to direct route requests initiated by the IERP to the peripheral nodes. BRP 

provides this packet delivery service by using the map generated by the local IARP. 

Consider an illustration of IERP using the network shown Figure 2.5.  We begin 

with node S preparing to send data to node D. Node S first checks to see if node D is in its 

routing zone.  Since it is not, node S sends a route request query to its peripheral nodes G, 

H, and C.  As nodes G, H, and C do not have a route to node D, they forward the route 

request to their peripheral nodes specifically B,F,E, and A.  Since node B has a route to 

D, node B responds to H with the forwarding path S-H-B-D. 
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Figure 2.5. IERP example with a zone radius of one [23] 

This method of sending route requests to peripheral nodes intuitively seems to be 

an efficient method of on-demand route discovery; however, flooding is a very real 

problem.  Since routing zones overlap it is possible that a route request will be forwarded 

to all nodes in the network.  To combat this problem ZRP implements a query detection 

process by which nodes eavesdrop allowing more nodes to learn what queries have 

already been forwarded.  In this scenario, if a previously forwarded request is seen it can 

be terminated.  If this problem is not dealt with correctly, the overhead generated can 

potentially be worse than that of flooding based queries [23]. 

The MANET routing protocol designs discussed so far are designed for best-

effort level network service; therefore, in their current state they are not adequate for 

applications with QoS requirements such as multimedia audio and video.  For this type of 

network traffic a proactive-like design makes the most sense since with proactive 

protocols routes are always available.  This allows the QoS route calculations to be 

executed with lower latency than the reactive scheme.  The problem encountered with a 

proactive solution is scalability.  Hybrid protocols share a portion of the advantage of 
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proactive protocols since they proactively maintain a percentage of routes; however, they 

also share the disadvantage of on-demand reactive routing since destinations outside the 

routing zone must be found using a route discovery process.  Additionally, careful 

measures must be taken to ensure route request packets do not create flooding broadcast 

problems.  Table 2.1 illustrates the tradeoffs each of these routing paradigms involves. Of 

the many challenges that exist in the complex MANET system, the problem of QoS 

routing and route maintenance (or fault-tolerance) is the focus of the following 

paragraphs. 

Table 2.1. Routing Protocol Tradeoffs 

Attribute 
 

Proactive Reactive Hybrid 

Route availability Always available On demand 
Dependent upon 

location of 
destination 

Volume of control 
traffic High Low compared to 

Proactive Lowest 

Periodic updates 
Required Yes No Yes, within a 

certain area 

Delay Low High 
Dependent upon 

location of 
destination 

2.5 Quality-of-Service Routing and Ad Hoc Networks 

The QoS model for the MANET can again be modeled as a graph (N, E) of N 

nodes and E edges.  All nodes in this case serve as routers and hosts.  Edges E represent 

communication links which are directed and symmetric.  Moreover, E and V change over 

time depending on node mobility.  It is also assumed that each node transmits a beacon 

packet at periodic intervals.  This beacon packet contains the node’s unique node 
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identification.  The QoS model for the MANET is similar to that previously presented for 

the wired network in that every edge has a characteristic measured by the associated QoS 

metric (bandwidth, delay, etc) represented in the network.  The same tasks for 

implementing QoS in the wired domain (i.e., calculating the feasible path, reserving path 

resources, tracking resource reservations, and so on) are in effect for QoS in the MANET. 

Perhaps not as obvious is the effect the mobile ad hoc environment has on implementing 

QoS.  

First, the centralized wired QoS routing algorithms require accurate global state 

information for efficient execution.  This is clearly not a reasonable requirement given 

the dynamic nature of the MANET and the time required for updates to propagate 

through the network.  

Second, when updating the necessary nodes with topology changes, care must be 

taken to avoid interfering with currently supported QoS connections.  This is a potential 

problem caused by the limited resources (bandwidth), omni-directional nature(e.g., 

hidden terminal problem) and dynamic nature of the MANET.  

Third, and of primary interest to this thesis, the occurrence of QoS connection-

link breakage due to node mobility is a very real and likely event; however, recent work 

found in the literature scarcely addresses this problem.  These consequences of the 

MANET suggest that support for fault-tolerant QoS in this environment is an intractable 

problem; however, recent research shows there are logical paths to fault-tolerant QoS 

realization even in this unpredictable domain.  Since current wired network QoS routing 
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algorithms are unsuited for the MANET, a new protocol designed for these types of 

network conditions must be implemented. 

It is noted here that high churn, or excessive node mobility, can cause QoS 

requirements to become unreachable.  Excessive node mobility implies that the topology 

changes before the network updates can propagate to all the relevant nodes[7]. 

Chakrabarti and Mishra call this characteristic combinatorial stability. “An ad hoc 

network is combinatorially stable if and only if the topology changes occur sufficiently 

slowly to allow successful propagation of all topology updates as necessary” [7].  For the 

remainder of this thesis, only combinatorially stable networks are considered.  

2.6 Quality-of-Service routing using fully distributed cluster based routing 

Nargunam and Sebastian [22] present a fully distributed cluster based (FDCB) 

routing algorithm aimed at QoS routing in mobile ad hoc networks.  With FDCB routing 

the issues of scalability encountered with centralized routing are circumvented.  This is 

because the FDCB method inherits the properties similar to that of hierarchical routing in 

that each node in a cluster only has to maintain QoS information for the other cluster 

members which is a fractional portion of the entire network.  Therefore, an increase in the 

number of nodes in a network should not demand significant increases in memory or 

algorithm runtime.  Further, since there is no requirement for global network state to be 

shared and maintained by all, there is no concern for the information dissemination 

overhead incurred by the centralized routing algorithms.  The FDCB routing process is as 

follows.  If the source and destination of a flow are not located in the same cluster, the 

source sends a route request packet to the gateway node which then forwards the packet 
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to the adjacent cluster(s).  As long as the receiving intermediate gateway nodes and links 

can support the requested QoS constraints, this process is repeated until the destination is 

located.  The discovered path is then sent back to the source at which point the required 

resource reservations are made and the traffic is sent.  The distributed properties of the 

FDCB routing algorithm allow it to avoid the problem of unmanageable shared global 

network state information.  FDCB’s distributed routing scheme means packets will suffer 

initial transmission latency due to the time required for route discovery.  Additionally, 

route requests may not flood the network in the traditional sense since a clustered 

architecture is used; however, precautions must be taken to ensure route queries 

propagate from the source to the destination as efficiently as possible and eventually 

terminate. 

Each cluster in the FDCB routing algorithm has the potential to obtain gateway 

nodes, which maintain communications with adjacent clusters, via the following 

sequence of operations: 

 Each idle node broadcasts a short beacon packet at periodic intervals 

containing its cluster ID announcing it is an active cluster member 

 When a non-cluster member receives the packet it learns it can contact the 

neighboring cluster through that node 

 The receiver sends a short beacon reply packet containing its cluster ID 

 The two nodes are then gateway nodes which provide access to each others 

cluster 
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With the FDCB algorithm there is no need for the node aggregation process used 

in hierarchical routing algorithms since clusters are not required to be represented by any 

aggregated data structure.  Consequently, the problem of erroneously aggregating a 

complex network into a single logical node is avoided.  

Although the FDCB routing algorithm addresses many of the difficulties 

encountered with the traditional QoS routing methodologies (i.e., centralized and 

hierarchical) it employs a distributed routing method, which has significant negative 

performance implications as mentioned previously.  More to the heart of this research, 

the paper does not talk to how failures that occur during a QoS connection are handled. 

Support for cluster joins and leaves is explicitly provided; however, the problem of 

mitigating impact on QoS in the event of an unpredicted node leave/failure is left 

untreated.  It is therefore assumed that this event is handled by the common practice of 

rerouting the QoS traffic from the source. 

Nargunam and Sebastian [22] illustrate the problems associated with conventional 

clustering techniques in which each cluster has exactly one node, the “cluster-head”, 

which is responsible for organizing and establishing the cluster.  This traditional cluster 

construction requires a cluster-head election scheme in which each time a cluster-head 

fails or leaves the cluster all available cluster nodes decide on a new cluster-head.  This 

standard election scheme has a single point of failure, the cluster-head.  That is, if the 

cluster-head fails or leaves the cluster, all information and responsibilities performed by 

the cluster-head become orphaned.  To avoid this problem, Nargunam and Sebastian 

propose a fully distributed architecture in which clusters are created using a non-
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traditional cluster creation algorithm. In this new cluster creation algorithm, each cluster 

member maintains a QoS parameter table for each of its cluster members in addition to a 

table containing all gateway nodes in the cluster.  In their efforts to avoid the problems of 

the traditional clustering scheme and improve scalability, FDCB is left with no effective 

way to handle connection failures.  Also, the distributed routing design presented is ill-

suited for the MANET QoS application.  Although Nargunam and Sebastian provide a 

logical path in development of a solution to the problem of scalability with regard to QoS 

routing in an ad hoc mobile environment, it is believed that the FDCB routing protocol 

could be significantly improved. 

2.7 Fault-tolerance in QoS Ad Hoc Networks 

Chen and Nahrstedt [26] propose fault-tolerance techniques in an effort to reduce 

the impact on QoS disruptions due to link failures caused by network dynamics.  It is 

important to note that Chen and Nahrstedt only consider applications which do not 

require hard guarantees.  “Soft QoS means that there may exist transient time periods 

when the required QoS is not guaranteed due to path breaking or network partition” [26]. 

Further, Chen and Nahrstedt state that many multimedia applications accept soft QoS and 

use adaptation techniques to reduce the level of QoS disruption [6], [15], [28].  One 

technique presented is to repair the broken path at the node failed by shifting the traffic 

over to a neighboring node and then routing around the breaking point.  This method 

avoids the costly process of rerouting the traffic from the source.  The second technique 

involves using a multilevel path redundancy scheme.  The idea is to establish multiple 

paths for the same connection.  The First-Level Redundancy sends all data along all paths 



 

2-29 

independently.  This redundancy level is used for ‘critical’ QoS connections.  The 

Second-Level Redundancy sends data along only the primary path and uses any secondary 

paths only in the event that the primary path is lost.  This redundancy level is used for 

QoS connections which can tolerate a certain degree of QoS failure.  The Third-Level 

Redundancy is similar to the second level except the secondary paths are not reserved; 

only calculated.  If a failure should occur, an attempt will be made to reserve the 

secondary path. 

The first technique, the repair algorithm, is proposed as the single approach to the 

following cases: 

1) The source moves out of range of the first intermediate node in the path 

2) An intermediate node moves out of range of either a preceding or successive 

node (preceding node is on the source’s side  of the intermediate node, 

successive is on the destination’s side of the intermediate node) 

3) The destination moves out of range of its preceding node (preceding node is 

the last intermediate node before the destination) 

4) Any node in the path leaves the network 

When case 2 occurs, the preceding node broadcasts a repair-requesting message 

to all its neighbors asking if any of them are able to take over the job of the defunct 

intermediate node.  The neighbors that have links to the successive node reply their 

resource availabilities to the preceding node.  If, based on the replies, the preceding node 

finds node i has sufficient resources for that role, it adds the link from itself to node i to 

the routing path and then sends i a path-repairing message.  When i receives the path-
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repairing message, it reserves the required resources and adds the link from itself to the 

successive node to the routing path.  Once the path has been repaired, a path-validation 

message is generated to insure that the repaired path does not violate any of the end-to-

end requirements.  The path-validation message is sent to the destination which then 

sends the message to the source.  The source then checks to see if the end-to-end 

requirements have been violated.  If they have, the source will reroute the traffic or some 

QoS negotiation will take place with the user application.  The performance metric used 

during simulation of the repair algorithm is the QoS ratio, defined as: 

total QoS timeQoS ratio
total QoS time best effort time

=
+ −

. 

Where best-effort time is defined as the amount of time spent repairing the broken 

path. The x-axis is the mobility ratio, defined as: 

total moving timemobility ratio
total stationary time total moving time

=
+

. 

The simulation results provided include a single graph which shows for a mobility 

ratio of less than 10%, the QoS ratio is above 95%.  As expected, the QoS ratio decreases 

as the mobility ratio increases.  For a mobility ratio more than 35%, the QoS ratio is 

below 80%.  The conclusion is that Chen and Nahrstedt’s routing algorithm should not be 

used in networks with high node mobility. 

2.8 Summary 

This chapter discussed the fundamental concepts and literature underlying the 

work presented in this thesis.  The chapter began with a review of the QoS routing 
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problem in wired networks and recent techniques that have been applied.  The MANET 

was discussed as were implications of QoS in this mobile environment.  A recent 

promising cluster based work aimed at providing QoS in the MANET was presented 

from the literature.  Finally, two techniques for providing fault-tolerance in the QoS 

supporting MANET were considered.  The first requires determining, and potentially 

implementing, multiple disjoint feasible paths [26].  This technique requires at least twice 

the number of network resources (depending on the redundancy level) in addition to 

increased computation time to determine multiple feasible paths for a single QoS 

connection.  Hence, the efficiency of this method is exceedingly low.  The second 

involves a packet broadcast process which can only be successful if the node responsible 

for performing the repair algorithm has a neighbor that can reach the successive node one 

hop away from the defunct (or failed) node[26].  This packet broadcast process, 

necessary for the repair algorithm proposed by Chen and Nahrstedt, involves 

communication overhead that is unnecessary if a cluster based fault-tolerant solution is 

used. Additionally, neither technique discusses the case where a failed link supported 

multiple QoS connections.  Although nothing in the literature exists which directly 

addresses the problem of fault-tolerant QoS routing in hybrid mobile ad hoc networks, 

this chapter provides the foundation to develop the methodology discussed in Chapter 

Three. 
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III. Methodology 

3.1 Chapter Overview 

This thesis considers the fault-tolerant problem in H-MANETs designed to 

support QoS requirements.  The previous chapter discussed two techniques that have 

been offered [26]; the first involving a path redundancy technique and the second 

concerning a local repair algorithm.  The work presented here is similar to the local repair 

algorithm described by Chen and Nahrstedt [26] in which the underlying concept is to 

handle QoS connection failures at the site closest to the link break point.  While the two 

protocols share this similarity, there are significant differences in the repair methods used 

and the level of fault-tolerance achieved.  This chapter presents the motivation for, and 

explanation of, key design features of the extended fully distributed cluster based 

(EFDCB) routing protocol which is a fault-tolerant modification to the FDCB routing 

concept [22].  The definitions and assumptions used by the algorithm are also provided. 

3.2 Problem Definition 

3.2.1 Goals and Hypothesis. 

Nargunam and Sebastian [22] propose a fully distributed algorithm, FDCB, in 

which a clustering technique is used to provide scalability by greatly lowering the amount 

of information which must be maintained at each node in the QoS supporting network.  

The FDCB algorithm addresses the MANET scalability problem successfully; however, 

it is missing the functionality necessary to maintain QoS connections when nodes 

supporting the QoS paths move, leave the network, or fail.  Since Nargunam and 
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Sebastian provide no information on the matter, it is assumed that FDCB applies the 

commonly used rerouting procedure to the problem of broken QoS paths.  That is, when a 

QoS path suffers a link breakage, the source is required to reroute the traffic via a 

completely new path.  Additionally, FDCB in its current form uses a distributed reactive 

routing technique which causes undesired packet transmission latency, especially for the 

QoS routing application.  Although FDCB does not provide a feasible routing scheme or 

local fault-tolerance it serves as groundwork to that end.  

It is hypothesized that an extension to the FDCB protocol, namely EFDCB, will 

provide the scalability, efficiency, and fault-tolerance critical to maintain QoS 

connections in this mobile environment.  The goal is to determine if the EFDCB QoS 

routing algorithm provides efficient QoS route recovery by testing it against the FDCB 

routing protocol.  Note that the local fault-tolerant EFDCB algorithm only has to consider 

a fraction of the total number of network links when determining a new feasible path 

through the cluster.  Hence, the burden of negotiating newly calculated QoS paths, as is 

done in the rerouting algorithm FDCB, is significantly reduced.  For this reason, it is 

expected that this new local method will have a considerable runtime advantage resulting 

in improved QoS route recovery time.  Faster QoS recovery time equates to lower QoS 

disruption time and therefore fewer dropped packets and improved throughput. 

3.2.2 Approach. 

To achieve efficient fault-tolerance, a cluster-head scheme is added to FDCB such 

that the cluster-head has complete ‘cluster-state’ knowledge.  This means the cluster-head 

has connectivity awareness of all nodes in the cluster.  Connectivity awareness includes 
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knowledge of all QoS connections currently supported by each cluster member, each 

cluster member’s resource availability and the cluster topology.  With this scheme, when 

cluster node i leaves the cluster, due to mobility or failure, and the QoS paths supported 

by i are broken, the cluster-head has all information necessary to begin a re-negotiation 

process allowing the connection to be re-established with minimal delay if possible (i.e., 

if available cluster resources can support the QoS constraints of the failed connection).  

The cluster-head collects this knowledge by means of two processes: through 

communication with the other clusters in the system via a clustered FSR algorithm and by 

a local clustered information exchange algorithm.  These processes ensure, with high 

probability and with low overhead, that knowledge of the systems’ state is maintained 

both to repair existing paths and to initiate new connections. 

3.3 System 

3.3.1 Services. 

The primary service provided by EFDCB is routing of QoS packets.  The key to 

delivery of packets with required constraints is the underlying QoS routing algorithm; 

however, in the challenging MANET environment, links can break often and without 

warning.  In this environment, the QoS routing algorithm needs a contingency plan for 

the eventual link breakage.  This is where EFDCB exhibits its secondary service, and the 

one of most interest here – QoS disruption mitigation.  When EFDCB is successful, 

packets are delivered such that the applications dependent upon the network are fully 

functional (e.g., the supported VoIP session has the desired end-to-end latency – hence, 

good voice quality is maintained throughout the conversation).  Conversely, if the 
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protocol fails the dependent applications could suffer lengthy QoS disruptions since the 

source will have to resort to rerouting. 

3.3.2 Design. 

3.3.2.1 Clustering. 

Numerous schemes exist for clustering nodes in the MANET.  FDCB  constructs 

non-overlapping clusters based on bandwidth and delay factors of each link [22].  

Another scheme uses location information obtained from the Global Positioning System 

to create a Virtual Grid Architecture (VGA) [1].  The purpose of the VGA is to cluster 

nodes into a fixed rectilinear virtual topology in an effort to make routing and network 

management as efficient as possible.   

The fundamental clustering algorithm adopted here is a modified version of the 

Generalized Distributed and Mobility Adaptive Clustering (GDMAC) protocol from 

Ghosh and Basagni [14].  This clustering scheme was primarily chosen because it has 

been demonstrated to perform well when subjected to the three different mobility models 

(random way point, random walk, Manhattan) used in many prominent simulation 

studies of ad hoc networks [14].  Further, the protocol is straightforward, allowing the 

necessary modifications to be clearly illustrated and understood.   

The modifications to GDMAC of interest to this research are those which make 

fault-tolerance in the QoS supporting MANET possible.  It should be mentioned that the 

original Ghosh and Basagni clustering algorithm is not applied to QoS.  This means an 

underlying QoS routing protocol as well as supporting procedures (i.e., for path 
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negotiation, resource reservation and resource de-allocation) must be constructed.  The 

QoS supporting procedures have been built into GDMAC via EFDCB. 

The optimum cluster size is a parameter which is dependent on several 

characteristics of the MANET.  Kumar and Gupta [17] show that the per node capacity of 

a random ad hoc network, where each node is capable of transmitting W bits per second 

is ( )/ logW n nΘ using a geometric analysis (where n is the number of nodes in the 

network).  The cluster size used for this research leaves sufficient bandwidth for 

transmission of the required control packets (assuming each node has 54Mbps 

transmission rate for their 802.11 interface).  Further, it is assumed clusters are situated 

such that the only inter-cluster nodes that are able to communicate are gateway nodes. 

3.3.2.2 QoS Routing. 

Since FDCB uses the on-demand reactive routing scheme, the decision was made 

to adopt a more proactive routing protocol for EFDCB.  The QoS routing scheme used by 

EFDCB is the Clustered Fisheye State Routing (CFSR) protocol [12].  Unlike FSR, 

presented in Section 2.4.1, CFSR proposes a clustering framework in order to reduce 

redundant broadcast routing control messages.  Recall that for FSR, the frequency at 

which node i sends its link state information to node j is dependent upon the distance 

from node i to node j (namely the scope node j falls in).  The greater the distance, the less 

frequent the link state update.   

CFSR allows clusterheads as well as gateway nodes to execute the original FSR 

algorithm sending out link state updates about the cluster while ordinary nodes are only 

allowed to send out link state information about themselves.  This limits the number of 
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messages sent from a significant portion of the network population (ordinary nodes).  The 

result is lower overhead of the routing protocol.  Assuming combinatorial stability, each 

node will become aware of the complete network state with a lower bandwidth cost.  The 

disadvantage is that routing control messages traverse the network at a slightly lower rate 

since a much smaller fraction of network nodes are allowed to broadcast full control 

messages.   

The authors of CFSR mention that with the scheme described above, redundancy 

is not minimized; however, it is reduced considerably.  In order to minimize the 

redundancy it must be guaranteed that each clusterhead does not receive link state 

information about the same cluster from more than one gateway node.  To accomplish 

this, the entire clustered network is partitioned into as many disjoint sets as the cluster has 

gateway nodes.  These partitions are determined by finding the distance from each 

external network node to each local cluster gateway node using the topology graph stored 

in the routing table.  The local cluster gateway node that has the shortest distance to the 

external network node includes that external node in its control message.  Due to the 

previously described mechanics of FSR (Section 2.4.1), the gateway node closest to the 

external network node will be the first gateway node to receive the external nodes link 

state update.  Hence, it will be responsible for providing this information to the cluster. 

CFSR is QoS ready since all that needs to be changed in the current link state 

definition is the addition of bandwidth and channel quality information to the link entry.  

EFDCB uses CFSR as it is presented with few modifications.  CFSR is initiated once the 
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clustering algorithm converges.  Before presenting the pseudo code for CFSR, some 

definitions are provided.  Bolded text represents modifications to the original definitions. 

CFSR Definitions 

 i – the generic node executing the update procedure 

 Ai – set of nodes that are adjacent to i (i's neighbor list) 

 N – set of external network nodes local gateway node i is closest to (i will send its 

updates to and receive updates from this set of nodes as described above) 

 TTi.LS(j) – denotes the link state information reported by node j.  Link state info 

contains j’s k weights wjk for the k QoS constraints(e.g., for three constrained 

routing, k = 3, wj1 could be the delay value, wj2 could be probability of packet 

loss, wj3 could be bandwidth) for each link j reports on 

 TTi. SEQ(j) – denotes the time stamp indicating the time node j has generated this 

link state information 

 TTi – i's topology table.  Each destination j has an entry in table TTi for each QoS 

constraint (e.g., if three constrained routing is used j would have TTi.LS(wj1), 

TTi.LS(wj2), TTi.LS(wj3) ).  Also, for each link state entry in TTi j has TTi.SEQ(j). 

 NEXTi – i's next hop table.  NEXTi(j) denotes the next hop to forward packets 

destined for j on the path with the required constraints 

 Scope – defined as the set of nodes that can be reached within a given number of 

hops.  (In the case discussed in Section 2.4.1, three scopes are used for 1, 2, and > 

2 hops respectively.) 

 Di – Di(j) denotes the distance of the shortest path from i to j 
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Each node begins with an empty neighbor list Ai and an empty topology table TTi.  

After node i initializes its local variables as shown in the NodeInit() procedure of Figure 

3.1, it learns about its neighbors by examining the sender ID of each received packet.  i 

then calls the Pkt_process procedure of Figure 3.2 on the received packet which contains 

the link state information received from its neighbors.  The Pkt_process procedure 

ensures the most up to date link state information is used by comparing the local 

sequence number with the embedded sequence number pkt.SEQ(j).  If any entry in the 

incoming message has a newer sequence number regarding destination j, TTi.LS(j) is 

replaced with pkt.LS(j) and TTi.SEQ(j) will be replaced by pkt.SEQ(j). 
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Figure 3.1.  Main (Node(i)) and Initialize (NodeInit(i)) Procedures of CFSR [12] 
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Figure 3.2.  Packet Process and Check Neighbors Procedures of CFSR [12] 

FindSP(i) (Figure 3.3) generates the shortest path tree rooted at i.  The shortest-

path algorithm used here is modified to generate a next hop table for each shortest path 

created.  This shortest path tree is used by i to send route updates to the set of nodes in N. 

The RoutingUpdate(i) procedure shown in Figure 3.4 scans through the topology 

table and if Di(x) is within range of the fisheye scope level l, TTi.LS(x) will be included in 

the update message.  The UpdateIntervall attribute is used to adjust the link state update 

frequency for the various fisheye scopes. 
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Figure 3.3.  Find shortest path procedure of CFSR[12] 
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Figure 3.4.  Routing update procedure of CFSR[12] 

 Note that by adopting this new routing scheme over the original FDCB method of 

distributed routing, additional memory resources are required.  Furthermore, although 

routing control packets are sent (as periodic updates are required), CFSR significantly 

reduces the amount of broadcast control packets over pure proactive protocols.  This is 

because only a small fraction of the network population is allowed to broadcast full 

control messages.  These changes allow each node to be aware of the complete network 

state with a lower bandwidth cost.  Given the fact that the necessary link state 

information is now available, by implementing any efficient QoS routing algorithm (e.g., 
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the limited path heuristic [30] discussed in Section 2.2.7), EFDCB is able to achieve its 

primary function of routing packets based on QoS constraints.  Note that no restriction is 

imposed on the method of QoS routing employed by EFDCB. 

3.3.2.3 Fault-tolerance. 

Some definitions are now presented to enable a detailed description of the 

EFDCB fault-tolerant approach.  An intermediate (I) node is any node that supports a 

QoS connection.  A defunct (D) node is a cluster node that previously was an I node; but 

has either moved out range or has failed.  A gateway node (GWN) is defined as a cluster 

node which is used to communicate with an adjacent cluster.  A potential GWN (P-GWN) 

is a node which has the ability to communicate with the same adjacent cluster as the 

current GWN; however, it is only used in the event that the current GWN becomes a D 

node.  As an example, in Figure 3.5 n3 is a P-GWN since it can communicate with n1 and 

the current GWN is n4 since it is currently communicating with n1.  A cluster-head (CH) 

is a cluster node which has the responsibility of monitoring and updating a cluster table 

which records all QoS connections currently supported by the cluster.  The CH is also 

responsible for initiating QoS connection repairs.  Note that a CH can also be a GWN.  

An ordinary node is a node that is neither a CH nor a GWN. 
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Figure 3.5.  Clustered ad hoc network 

Referring to Figure 3.5, let n0 be the source, n10 the destination and P the QoS 

path.  Each node i in P has a successive (succ) node except n10.  Further, each node i in P 

has a preceding (prec) node except n0.  In a clustered ad hoc network such as the one 

described here, P can be broken if any of the following cases occur: 

1) Ordinary I node moves out of range of a succ I node in the cluster(i.e., n5 

moves out of range of n7) 

2) Ordinary I node moves out of range of a prec I node in the cluster(i.e., n5 

moves out of range of n4) 
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3) I GWN moves out of range of a succ I node in the cluster(i.e., n4 moves out of 

range of n5) 

4) I GWN moves out of range of a prec I node in the cluster(i.e., n7 moves out of 

range of n5) 

5) I GWN moves out of range of a succ I GWN in the cluster(i.e., if n4 were 

connected to n7 and n4 moves out of range of n7) 

6) I GWN moves out of range of a prec I GWN in the cluster(i.e., if n4 were 

connected to n7 and n7 moves out of range of n4) 

7) I GWN moves out of range of a succ GWN not in the cluster(i.e., n7 moves out 

of range of n9) 

8) I GWN moves out of range of a prec GWN not in the cluster(i.e., n4 moves out 

of range of n1) 

9) I CH moves out of range of a succ or prec I node in the cluster(i.e., if P were 

such that n8 had n4 as a prec node and n7 as a succ node and n8 moved out of 

range of either node) 

In the case where the D node is an ordinary I node (cases 1 and 2), the cluster-

head aggregates all available cluster resources as well as all cluster supported QoS routes 

and re-calculates the feasible QoS paths for the portion of the routes that traverse the 

cluster.  Assuming the necessary resources for the QoS constraints of all paths exist; 

these new routes will be the optimum routes for the cluster given the current cluster 

topology.  The necessary route resource negotiations are all handled within the cluster 

and the route is restored.  In the case where the D node is a GWN (3-8), the CH first 
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ensures the P-GWN can handle the QoS constraints previously supported by the now D 

GWN.  Once it has been determined that the P-GWN can handle this traffic, the necessary 

resources are allocated.  After a specified time of not receiving a beacon message from 

the D GWN, the preceding node to the D GWN attempts to route traffic through the P-

GWN and the route is restored.  Note: Case 9 (the CH fails while it is supporting a QoS 

connection) is addressed in Section 3.3.2.4. 

With the EFDCB protocol, reducing the impact of a connection failure becomes 

more manageable since the cluster-head has complete cluster connectivity awareness.  

The result is a QoS route maintenance algorithm that accomplishes the goal of 

developing an efficient fault-tolerant QoS routing algorithm for the MANET. 

3.3.2.4 EFDCB Protocol 

 Following the modifications and additions to the clustering algorithm and FDCB, 

EFDCB remains primarily message driven, as the separate algorithms were originally 

designed [14].  This indicates that the particular procedure executed by a node is 

dependent upon the message it received.  Several types of messages are exchanged 

among the nodes.  Before discussing the messages used in the EFDCB, the associated 

definitions and assumptions are presented.  Note that in order to aid in distinguishing 

segments of the protocol, assumptions and definitions that are part of the original 

algorithms from those that are new, text will appear in bold whenever it represents a 

modification or addition to the original work. 
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EFDCB Definitions 

 v – The generic node executing the algorithm (assume v encompasses the node’s 

ID and its weight) [14] 

 Cluster-head – cluster node which has the responsibility of monitoring and 

updating the cluster QoS table as well as handling connection failures (i.e., 

aggregating cluster resources and supported QoS connection constraints, 

determining new feasible paths through the cluster, and notifying cluster 

nodes of the new paths) 

 Gateway Node – cluster node that is used to communicate with an adjacent 

cluster 

 Ordinary Node – cluster node which is neither a gateway node nor a Cluster-

head 

 wv – Weight of v, an integer > 0 which indicates how good that v is for serving as 

a cluster-head.  For example, the weight could be computed based on the nodes 

residual bandwidth, available energy, or its mobility [14] 

 GatewayNode(–) – Boolean variable.  GatewayNode(v) is set to true when 

cluster node v is adjacent to, and can communicate with, at least one other 

node in an adjacent cluster 

 H – The H parameter implements Ghosh and Basagni’s idea that cluster re-

organization is needed only when the new cluster-head is better than the current 

one by some specified value.  That is, a clustered node switches to a newly 

arrived cluster-head only when the weight of the new cluster-head exceeds the 
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weight of its current cluster-head by a quantity H.  By manipulating the value of 

H, the likelihood a node will switch to a new neighboring cluster-head can be 

controlled [14]. 

 K – Ghosh and Basagni’s K parameter controls the spatial density of the cluster-

heads.  That is, up to K ≥ 0 cluster-heads are allowed to be neighbors.  K = 0 

ensures that no two cluster-heads can be neighbors.  By setting K > 0, the 

probability of cluster re-organization is lowered since a cluster-head is not forced 

to give up its position when up to K-1 cluster-heads with bigger weights become 

its neighbors[14]. Note: To simplify the EFDCB algorithm, H = 0 and K = 0 are 

the optimal values.  With these values, the interaction of cluster-heads is avoided.  

That is, by setting H = 0, K = 0, cluster-heads are not allowed to be neighbors. 

 Γ(v) – the set of all nodes one hop away from v in the same cluster [14] 

 П(v) – the set of all nodes one hop away from v and in another cluster.  

Initialized to null and only updated if v becomes a Gateway node 

 GT – table of gateway nodes for the cluster, maintained and broadcasted by 

the cluster-head 

 Cluster(v) – the set of nodes in v’s cluster, initialized to Ø [14] 

 Cluster-head – the variable in which every node records the ID of the cluster-head 

that it joins (note Cluster-headv denotes the cluster-head of node v) [14] 

 Ch(–) – Boolean variables.  Node v sets Ch(u), { } ( )u v v∈ ∪Γ , to true when either 

it sends a CH(v) message (v = u) or it receives a CH(u) message from 

( , ( ))u u v u v≠ ∈Γ  [14]. 
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 NT – node QoS table containing the current existing connections of the 

associated node (i.e., v.NT refers to node v’s own QoS table) – sent by node v 

to the cluster-head when either 1) node v’s cluster-head changes 2) node v’s 

QoS table changes or 3) update to the cluster-head is required 

 AT – table containing the current available resources of the associated node 

(i.e., v.AT refers to node v’s own available resources table) 

 CT – cluster QoS table containing the address, weight, NT and AT of all 

cluster nodes – knowledge shared by all cluster nodes via periodic cluster-

head broadcast  

 w(p) – is the vector sum of all weights for all constraints of all edges in path p 

 Connex(–) – Boolean variable.  Cluster-head sets Connex(v) to true when v is 

supporting a connection.  Connex(v) is false otherwise 

 ConnexParams(–) – table of variables into which the Cluster-head records 

the QoS connection requirements of a particular path (e.g., ConnexParams(p) 

would contain a table of the QoS parameters for path p) 

 PATH(dst) – the set of QoS constrained paths to the destination dst (this set 

of paths could consist of only the single path which satisfies the collection of 

QoS constraints if a multiconstrained QoS routing algorithm is used or a set 

of split paths if a multicommodity flow implementation for QoS routing is 

used) 

 PATHO – the original set of feasible paths through the cluster for the 

supported connections 
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 PATHF – the set of paths through the cluster that have failed due to the failed 

node 

 PATHN – the newly calculated set of feasible paths through the cluster for the 

supported connections 

 

At cluster set up, or when a node is added to the network, its variables are 

initialized as follows: 

Cluster-head = NULL 

Connex(–), Ch(–), GatewayNode(–)  = false 

PATHO, PATHF, PATHN, ( )vΓ , П(v), Cluster(–) = Ø 

CT, GT, NT, AT, ConnexParams(–) = NULL 

H, K = 0 

 

Assumptions 

 All nodes have a unique identifier 

 Two nodes can be cluster members of the same cluster if and only if their 

Euclidean distance is ≤ 30m (approximate range of 802.11g) 

 Nodes signal their presence via a periodic beacon message and the drifting in of a 

new node is realized when its new neighbors hear its beacons 

 When a node does not hear signals from a known neighbor within a certain 

amount of time, it assumes the neighbor to be either “dead” or out of range due to 

mobility 
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 Determining a node has failed or moved out of range will prompt the 

corresponding procedure  

 All nodes have a single larger bandwidth interface (e.g., FSO transceiver, 

directional RF transceiver, etc.) for each node they can communicate with via 

802.11 (the link state data is based on this link) 

 All procedures are atomic except the Route_traffic(u) procedure and the 

procedures executed for receipt of the PATH(v.rsrcs, dst) and CTS(u) 

messages – the following paragraphs will explain this in further detail 

 In order to discuss the relevant features of EFDCB, it is assumed that the CFSR 

algorithm has converged.  That is, all gateway nodes in the network have path 

routing table entries for all network destinations.  Also it is assumed that the 

associated applications using this QoS network have soft QoS constraints and use 

adaptive techniques to help minimize QoS disruptions as described by Chen and 

Nahrstedt [26] – discussed in Section 2.5.  Combinatorial stability, as described in 

Chapter Two, is also adopted.  Further, with this model, nodes have the ability to 

send and receive 802.11 best-effort traffic while sending and receiving QoS traffic 

along larger bandwidth, directional links.  Finally, resources allocated for a QoS 

connection are de-allocated after a specified period of inactivity. 

 

Messages 

The message CH(v) is used by a node v to communicate to its neighbors that it 

intends to be a cluster-head [14].  The JOIN(v, u) message is sent by a node  v to 
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communicate to its neighbors that it will be part of the cluster whose cluster-head is node 

u [14].  The RESIGN(w) message is used to require the resignation from the role of 

cluster-head of any receiving cluster-heads whose weight is ≤ w [14].  PATH(v.rsrcs, 

dst) message is used by source v to request resources from each node u along the path of 

a new potential QoS connection to destination dst.  The CTS(u) message  is sent by 

destination v back to source u along the initialized (intermediately allocated) path to 

finalize the resource allocations.  PARAMS(v.NT, v.AT, Cluster-head) message is used 

to send information about the supported connections (v.NT), as well as the available 

resources (v.AT), of node v to the cluster-head.  CLSTR_PRMS_UPDT(v, CT) message 

is broadcast at regular intervals by cluster-head v to update each cluster nodes’ cluster 

QoS table.  REPAIR(ConnexParams(p), v, Cluster-head) message is sent by the cluster-

head to notify node v to restore a connection using the information in the 

ConnexParams(p) table.  QOS_VALID(u, v) message is sent from source u to 

destination v after a failed link has been repaired to ensure the end-to-end QoS constraints 

are sustained.  The QoS validation message is initialized by source u after receiving 

LINK_REPAIRED(failed_node, v, u) from the node that is new to the path – v.  

REPAIR_FAILURE(v, Cluster-head) message is sent when v’s attempts to repair a 

failed connection also fails.  FAILED_CONNEX(failed_node, p, v) message sent to 

source v of QoS path p in the event that the failed connection supporting p could not be 

repaired.  HELLO(u, Cluster-head, Init) message used to create gateways via adjacent 

nodes in different clusters.  At periodic intervals, node u sends a HELLO(u, Cluster-

head, Init) message in an attempt to receive a HELLO(v, Cluster-head, Reply) message. 
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The procedures of the EFDCB protocol are presented in the paragraphs that 

follow.  A few of the basic clustering procedures are largely the same as the original 

work; however, they are included for completeness.  Most of the procedures are entirely 

new.  As mentioned previously, in order to aid in differentiating segments and procedures 

of the protocol that are part of the original design from those that are new, pseudo code 

will appear in bold whenever it represents a modification or addition to the original work.  

The first procedure of interest is Init. 

Init.  The Init procedure remains predominantly as described by Ghosh and 

Basagni [14].  When the cluster is initialized, or when a node v is added to the network, v 

executes the Init procedure to determine its role.  If among its neighbors there is a cluster-

head with bigger weight, then v will join it and send a PARAMS message providing the 

cluster-head with v’s NT and AT which the cluster-head will then use to update the CT.  If 

no node exists which has a weight bigger than v, v will be a cluster-head.  In this case, the 

new cluster-head v checks the number of its neighbors that are already cluster-heads.  If 

they exceed K = 0, then a RESIGN message is also transmitted, carrying the weight of the 

first cluster-head (the node with the lowest weight) that violates the K-neighborhood 

condition (this weight is determined by the operator minK).  Since K = 0, the node with 

the largest weight will replace all cluster-heads within 30 meters who have a lower 

weight then v. 

PROCEDURE Init; 
begin 
 if { }( ) : ( )z vz v w w Ch z∈Γ > ∧ ≠∅   //if there exists a node z in the set of v’s one hop 

//neighbors st the weight of z > the weight of v 
  //AND either z has sent out a CH msg (v=z) or it 
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  //has received a CH msg from z (v≠z) 
 then begin 
 { }: max : ( )

z vw wx z Ch z>= ;//x=the node z with the max weight st v has 
//received a CH msg from z 

 send JOIN(v,x):     //broadcast Join msg (I’m joining x’s cluster) 
 Cluster-head := x 
 send PARAMS(v.NT, v.AT, Cluster-head)//send Cluster-head my QoS  
        //table containing only my info 
 end 
 else begin      //else, I’m going to be the new cluster-head 
  send CH(v);     // send cluster-head msg 
  Ch(v) := true;    // I sent the cluster-head msg = TRUE 
  Cluster-head := v;   // cluster-head = ME 
  Cluster(v) := { }v ;   // the set of nodes in my cluster is me 
  if { }( ) : ( )z v Ch z∈Γ >K then send RESIGN { }( )min : ( ) ( )K zw z v Ch z∈Γ ∧  

// if the number of one hop nodes that are CH’s is greater than K, send the 
// RESIGN msg //with the (K+1)th biggest weight 

  end 
end 
 

Figure 3.6.  Init Procedure 

Node_failure.  When node v is made aware of the failure of node u, v checks if its 

own role is cluster-head and if u was in its cluster.  If this is the case, v removes u from 

Cluster(v).  In this scenario, if u was an intermediate node supporting a connection (or 

multiple connections), cluster-head v aggregates all cluster resources and all supported 

QoS traffic and determines new feasible QoS paths.  Node v then advises all relevant 

cluster nodes to support the required QoS connection via the REPAIR message.  If all 

QoS connections cannot be supported by the cluster resources currently available (i.e., 

the cluster-head determined an infeasibility situation), the cluster-head sends a 

FAILED_CONNEX message to all sources that were using resources on the failed node 

and no path changes are implemented in the cluster.  If v is an ordinary node, and u was 
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its own cluster-head supporting a QoS connection, and v is the node with the next weight 

wv in descending order after wu (i.e., { }{ }( ) : v zv z v u w w∃ ∀ ∈ Γ − > ), node v then becomes 

the new cluster-head and attempts to fix u’s failed connection.  In the case where v is an 

ordinary node which is not the next weight wv in descending order after wu, and u was its 

own cluster-head (supporting or not supporting a QoS connection), v waits a specified 

period of time to receive the CH(y) message from the cluster node with the next highest 

weight to u, node y.  If v receives the CH(y) message in the allotted time, v joins y’s 

cluster.  If v does not receive the CH(y) message in the required time period, v must 

determine a new role for itself.  In this case, v determines if there exists a cluster-

head ( ): z vz v w w∈Γ > .  Node v then joins the cluster-head with the bigger weight and 

sends it’s NT and AT to its new cluster-head, otherwise it becomes a cluster-head.  In any 

case where u was the cluster-head and was also supporting a connection, the new cluster-

head will attempt to repair u’s failed connection only if the cluster remains relatively 

preserved (i.e., the node next in weight after wu becomes the new cluster-head).  The re-

clustering process is invoked for each node if node v, where { }{ }( ) : v zv z v u w w∃ ∀ ∈ Γ − > , 

does not become the new cluster-head.  The time required for re-clustering will add 

significant time to the connection recovery process; therefore, re-routing is employed in 

this situation.  It is likely the cluster will change very little when a cluster-head fails since 

combinatorial stability is assumed.  Further, since all cluster nodes are already aware of 

the next potential cluster-head (i.e., this information is broadcast by the cluster-head via 

the CT at periodic intervals), once a cluster-head fails cluster members wait a short 

amount of time (propagation delay + processing delay + error) to receive the CH(v) 
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message from the expected new cluster-head.  If the CH(v) message is not received in the 

allotted time, all cluster nodes must determine their new roles. 

PROCEDURE Node_failure(u); 
begin 

if Ch(v) and (u ∈  Cluster(v)) 
 then  Cluster(v) :=  Cluster(v) – { }u  

if Connex(u) = true then 

if ( ) ( )
( )

. . ( )
Oz Cluster v p PATH

z NT z AT ConnexParams p
∀ ∈ ∀ ∈

⎧ ⎫⎪ ⎪+ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑   

 then begin 
calculate PATHN 

 for each path p in PATHN 
 for each node n in p 

 send REPAIR(ConnexParams(p), n, Cluster-head) 
fi //connection cannot be repaired due to resource limitations 

 else for each p in PATHF 
 for each source node s of p 

send FAILED_CONNEX(failed_node, p, s) 
 fi //no broken connection to repair 
 else if Cluster-head = u then 
 if { }{ }( ) : v zv z v u w w∃ ∀ ∈ Γ − >  
 begin   //I’m going to be the new cluster-head 
 send CH(v);// send cluster-head msg 
 Ch(v) := true;   //v sent the cluster-head msg = TRUE 
 Cluster-head := v;  // cluster-head = ME 
 Cluster(v) := Cluster(u) – { }u ;  //current set of nodes in my cluster 

 if { }( ) : ( )z v Ch z∈Γ > K then  

  send RESIGN { }( )min : ( ) ( )K zw z v Ch z∈Γ ∧  
 fi 

if Connex(u) = true then 

if ( ) ( )
( )

. . ( )
Oz Cluster v p PATH

z NT z AT ConnexParams p
∀ ∈ ∀ ∈

⎧ ⎫⎪ ⎪+ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑   

 then begin 
calculate PATHN 

 for each path p in PATHN 
 for each node n in p 

 send REPAIR(ConnexParams(p), n, Cluster-head) 
fi //connection cannot be repaired due to resource limitations 
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 else for each path p in PATHF 
 for each source node s of p 

send FAILED_CONNEX(failed_node, p, s) 
 fi //no broken connection to repair 
 end  
 else wait(t time units) 
  if received CH(y) == true 
  then begin 
  send JOIN(v,y): 
  Cluster-head := y 
  send PARAMS(v.NT, v.AT, Cluster-head) 
  end 
  else if { }( ) : ( )z vz v w w Ch z∈Γ > ∧ ≠∅  
  then begin 
  { }: max : ( )

z vw wx z Ch z>=  
  send JOIN(v,x): 
  Cluster-head := x 
  send PARAMS(v.NT, v.AT, Cluster-head) 
  end 
 else begin   //else, I’m going to be the new cluster-head 
 send CH(v);// send cluster-head msg 
 Ch(v) := true;   //sent the cluster-head msg = TRUE 
 Cluster-head := v;  // cluster-head = ME 
 Cluster(v) := { }v ;  //current set of nodes in my cluster is me 

if { }( ) : ( )z v Ch z∈Γ > K then  

send RESIGN { }( )min : ( ) ( )K zw z v Ch z∈Γ ∧  
 fi 
  end 
end 
 

Figure 3.7.  Node_failure Procedure 

New_link.  The New_link procedure is largely the same as Ghosh and Basagni’s 

original design except for the addition of the send PARAMS message.  Once cluster node 

v discovers a new node u, it first checks to see if u is a cluster-head.  If u is a cluster-head 

and weight wu is greater than the weight of v’s current cluster-head, u becomes v’s new 

cluster-head and sends u a PARAMS message.  Conversely, if v is a cluster-head and the 
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number of its neighboring cluster-heads is greater than 0, the weight of the cluster-head x 

that violates the K = 0 condition is determined.  If it turns out that wv > wx, node x will be 

sent the RESIGN message.  If there is no cluster-head x such that wv > wx, v will no 

longer be a cluster-head and will join the cluster-head with the biggest weight.  Node v 

will then send its newly acquired cluster-head the PARAMS message. 

PROCEDURE New_link(u); 
begin 
 if Ch(u) then 
 if (wu > wCluster-head + H) 
 then begin 
 send JOIN(v, u); 
 Cluster-head := u; 
 send PARAMS(v.NT, v.AT, Cluster-head); 
 if Ch(v) then Ch(v) := false 

fi 
 end 
 else if Ch(v) and { }( ) : ( )z v Ch z∈Γ >  K then 
 begin 
 { }: min : ( ) ( )K zw w z v Ch z= ∈Γ ∧ ; 
 if wv > w then send RESIGN(w) 
 else begin 
 { }: max : ( )

z vw wx z Ch z>= ; 
 send JOIN(v, x); 

Cluster-head := x; 
 send PARAMS(v.NT, v.AT, Cluster-head); 
 Ch(v) := false 
 end 
 end 
end 

Figure 3.8.  New_Link Procedure 

Route_traffic(u).  Source node v is made aware of the need to route new traffic by 

the associated application.  Node v checks its cluster members to see if u is in this set of 

nodes.  If u is in the current cluster, u’s available resources are obtained from the CT 
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table.  If the required resources are available, they are reserved and the traffic is sent.  If 

the destination is not in the current cluster, v forwards the PATH(v.rsrcs, dst) to the 

cluster gateway nodes. 

PROCEDURE Route_traffic(u); 
begin 
 if ( ){ }( ):z v z u∈Γ = then 

if (v.rsrcs ≤ u.AT ) then 
 { }: :ux address z CT z u= ∈ =  

{ }: :vy address z CT z v= ∈ =  
send PATH(y.rsrcs, dst) 
counter = t time units 
while (CTS(u) not received OR counter ≠ 0) do 

  counter-- 
  od 
  if (counter == 0 AND CTS(u) not received) then 

exit(1) //destination is not responding 
else if (CTS(u) received) 

send DATA(x, y) 
else { 

for each gateway node n 
{ }: :ux address z CT z n= ∈ =  

{ }: :vy address z CT z v= ∈ =  
send PATH(y.rsrcs, dst) 

 next n 
end 
 

Figure 3.9.  Route_traffic Procedure 

Note: the following procedures are initiated when the corresponding message is 

received. 

On receiving PARAMS(u.NT, u.AT, Cluster-head): performed by the Cluster-

head (in this case the cluster-head is node v) – On receiving the message PARAMS(u.NT, 

u.AT, v), Cluster-head v updates the CT with this new information.  v then checks the time 
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since the broadcast of the last CT.  If sufficient time has passed since the last broadcast, v 

broadcasts the CT to all cluster nodes.  During construction of a new cluster, the cluster-

head has the potential to receive many CT updates.  The CT is never sent at intervals less 

than some time T.  The effect is to allow the cluster to reach a level of stability before 

broadcasting cluster table updates.  Although it is not explicitly shown in pseudo code, 

the CLSTR_PRMS_UPDT(CT, v) message is broadcast at regular intervals (similar to the 

beacon message) throughout the life of the cluster-head. 

On receiving PARAMS(u.NT, u.AT, Cluster-head); 
begin 
 if Ch(v) AND v = Cluster-head then begin 
    CT = CT { }.u NT∪ { }.u AT∪  

T = current_time – previous_CT_send_time 
if (T > specified_ interval_time){ 

    broadcast CLSTR_PRMS_UPDT(CT, v); 
previous_CT_send_time = current_time; 

} 
    end 
end 

Figure 3.10.  PARAMS Message Receipt (for the cluster-head) 

On receiving PARAMS(CT, Cluster-head): On receiving the message 

PARAMS(CT, Cluster-head), v first ensures that the cluster-head which sent the message 

is v’s cluster-head.  Node v then checks to see that the CT has an accurate account of v’s 

NT and AT.  If these two conditions hold, v records the received cluster QoS table.  

Otherwise, if v received from the correct cluster-head but CT is incorrect, v sends its NT 

and AT to the cluster-head. 

On receiving PARAMS(CT, Cluster-head); 
begin 
 if Cluster-headv = Cluster-head then begin 
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if(v.NT == NTv ∈  CT AND v.AT == v.AT ∈  CT) 
 CTv = CT  

else{ 
send PARAMS(v.NT, v.AT, Cluster-head) 
} 

    end 
end 

Figure 3.11.  PARAMS Message Receipt (for non-cluster-head nodes) 

On receiving REPAIR(ConnexParams(p), v, Cluster-head): On receiving the 

message REPAIR(ConnexParams(p), v, Cluster-head), v first ensures that the cluster-

head which sent the message is v’s cluster-head.  Node v then checks to see that it has the 

resources to support the new connection described in the ConnexParams(p) message.  

Upon verification of available resources, v uses the information it knows about the 

connection (contained in the ConnexParams(p) table) to attempt to restore the link.  If the 

link is restored successfully, LINK_REPAIRED(failed_node, v, u) is sent from v to 

source u of the QoS traffic.  If v determines that it cannot communicate with the nodes 

necessary to make the connection, v sets the boolean ERROR to true, and v.NT and v.AT 

are sent to the cluster-head whether the connection is reconnected or not.  Notice that this 

procedure is executed for reconnection of links that may or may not have failed since the 

cluster-head determines a new set of feasible paths for all connections that traverse the 

cluster when a failure occurs (assuming the necessary cluster resources are available). 

On receiving REPAIR(ConnexParams(p), v, Cluster-head); 
begin 

if Cluster-headv == Cluster-head then 
 if (v.AT < ConnexParams(p)) then  
  send PARAMS(v.NT, v.AT, Cluster-head); 
  send REPAIR_FAILURE(v, Cluster-head) 
 else {                              //install new connection 
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 v.AT = v.NT - ConnexParams(p) 
if(!ERROR){           //if there was no problem making the nec connections 

 send PARAMS(v.NT, v.AT, Cluster-head); 
Connex(v) = true 
LINK_REPAIRED(failed_node, v, u) 

 else 
 send REPAIR_FAILURE(v, Cluster-head) 
end 

Figure 3.12.  REPAIR Message Receipt 

On receiving LINK_REPAIRED(failed_node, u, x): This concept is borrowed 

from Chen and Nahrstedt [26].  On receiving the message 

LINK_REPAIRED(failed_node, u, x), source node v sends the QOS_VALID(y, v) to any 

destination node y which received QoS traffic that passed through failed_node.  Once y 

receives this message, it sends the QOS_VALID(v, y) message enabling v to determine if 

end-to-end delay constraint has been violated. 

On receiving LINK_REPAIRED(failed_node, u, x); 
begin 

for each route r through failed_node 
for each destination t of r 

send QOS_VALID(t, v) 
next t 

next r 
end 

Figure 3.13.  LINK_REPAIRED Message Receipt 

On receiving REPAIR_FAILURE(u, Cluster-head): performed by the Cluster-

head only: On receiving the message REPAIR_FAILURE(u, Cluster-head) cluster-head 

v immediately sends a FAILED_CONNEX(failed_node, v, x) back to any source x which 

was using resources on failed_node. 

On receiving REPAIR_FAILURE(u, Cluster-head); 
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begin 
for each source s using failed_node 

send FAILED_CONNEX(failed_node, v, s); 
next s 

end 

Figure 3.14.  REPAIR_FAILURE Message Receipt 

On receiving FAILED_CONNEX(failed_node, u, v): On receiving the message 

FAILED_CONNEX(failed_node, u, v), node v attempts to reroute the associated QoS 

traffic via the Route_traffic(t) procedure for each route r which traversed failed_node. 

On receiving FAILED_CONNEX(failed_node, u, v); 
begin 

for each route r that traversed failed_node 
for each destination t of r 

Route_traffic(t) 
next t 

next r 
end 
 

Figure 3.15.  FAILED_CONNEX Message Receipt 

On receiving QOS_VALID(v, u): On receiving the message QOS_VALID(v, u), 

node v immediately sends a QOS_VALID(u, v) back to the source. 

On receiving QOS_VALID(v, u); 
begin 

send QOS_VALID(u, v) 
end 

Figure 3.16.  QOS_VALID Message Receipt 

On receiving HELLO(u, Cluster-head, Init): On receiving the message HELLO(u, 

Cluster-head, Init), node v checks the value of Cluster-head to determine whether the 

sender, u, is a cluster member of the same cluster or the member of an adjacent cluster.  If 
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u is a cluster member of the same cluster the message is discarded.  If the sender is the 

member of an adjacent cluster v then checks to see if it has received a HELLO message 

from u previously.  If v has not received a HELLO message previously from u, v notes 

that it can contact the adjacent cluster through node u.  Node v then notifies the cluster-

head of this, and transmits a HELLO(v, Cluster-head, Reply) message to the sender.  u 

receives the HELLO(v, Cluster-head, Reply) message, notes that it can contact the 

adjacent cluster through v, and notifies its cluster-head.  Node v is now a gateway node 

from its cluster to u’s cluster and u is now gateway node from its cluster to v’s cluster. 

On receiving HELLO(u, Cluster-head, Init or Reply); 
begin 
 if Ch(v) and Cluster-headv ≠ Cluster-head then begin 
  if Init then 
   if ( )u v∉Π then 
    { }( ) ( )v u vΠ = ∪Π  
    send MYNGHBRS( ( )vΠ , Cluster-head) 
    send HELLO(v, Cluster-head, Reply) 
    GatewayNode(v) = true 
   fi 
  else if Reply then 
   if ( )u v∉Π then 
    { }( ) ( )v u vΠ = ∪Π  
    send MYNGHBRS( ( )vΠ , Cluster-head) 
    GatewayNode(v) = true 
 
   fi 
  fi 

end 
end 
 

Figure 3.17.  HELLO Message Receipt 
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On receiving MYNGHBRS(П(u) Cluster-head): performed by the Cluster-head 

only: On receiving the message MYNGHBRS( ( )uΠ , Cluster-head), Cluster-head 

amalgamates the received П(u) into the cluster gateway table (GT).  Cluster-head then 

broadcasts the GT to all cluster nodes.  Since it is unlikely that MYNGHBRS messages 

will be transmitted often, no limitation is imposed on the frequency with which the 

CLSTR_GN_UPDT(GT, v) messages can be sent. 

On receiving MYNGHBRS( ( )uΠ , Cluster-head); 
begin 
 if Ch(v) and v = Cluster-head then begin 
    GT = GT ∪П(u) 
    broadcast CLSTR_GN_UPDT(GT, v); 
    end 
end 
 

Figure 3.18.  MYNGHBRS Message Receipt 

On receiving PATH(u.rsrcs, dst): On receiving the message PATH(u.rsrcs, dst), v 

checks to see if it has the required resources using its availability table (v.AT).  If not, v 

drops the PATH packet.  If v has the required resources, it does an intermediary 

allocation of the requested resources (adjusting the AT to reflect this potential additional 

connection).  If v is the destination, it allocates the necessary resources and responds with 

a CTS(u) message which traverses back down the path to source u.  Node v then waits a 

predetermined amount of time to receive the data packet.  If the data packet is not 

received in this allotted time, v de-allocates the requested resources.  In the case where v 

is not the destination, once the intermediary resource allocation is done, a count down 

timer is initiated.  If the associated CTS(u) message is not received before the counter 

expires, the resources are de-allocated.  Note that this procedure is not atomic since 
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intermediary nodes must be looking for the receipt of the CTS(u) message or handling 

other received messages or events while decrementing its counter.  By using the count 

down timer, resources are not held for extended periods in the event that the path is never 

used (e.g., if a node farther down the path cannot support the QoS request).  If v is not the 

destination, v checks to see if the destination is in its routing table and if the path in 

routing table entry meets the required constraints.  If so, v routes the PATH(u.rsrcs, dst) 

message on to the destination.  If no path exists to the destination which can support the 

required constraints, v discards the packet. 

On receiving PATH(u.rsrcs, dst); 
begin 
 if (u.rsrcs ≤ v.AT ) then 

v.AT = v.AT – u.rsrcs 
if (v == dst) then 

  send CTS(u) 
counter = t time units 
while(DATA(u, v) not received AND counter ≠ 0) do 

counter— 
od 

  if (counter == 0 AND DATA(u, v) not received) then 
   v.AT = v.AT + rsrcs  //de-allocate after waiting t time units 
   fi 

 
 else  

flag = 0; 
{ }: :destinationx address z CT z dst= ∈ =  

for path p in PATH(x) 
  if (w(p) < u.rsrcs)  

  send PATH(u.rsrcs, dst) 
flag = 1; 
break 

if(flag == 1) then 
counter = t time units 

  while (CTS(u) not received ∧ counter ≠ 0) do 
   counter-- 
  od 
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   if (counter == 0 AND CTS(u) not received) then 
   v.AT = v.AT + rsrcs//de-allocate after waiting t time units 

 fi 
fi 

 else 
  //drop the packet 
end 

Figure 3.19.  PATH Message Receipt 

On receiving the CH(u): The procedure executed upon receipt of the CH(u) 

message is essentially the same as the original associated procedure.  The only exception 

is the addition of the two send PARAMS lines which are executed after a node accepts a 

new cluster-head.  When v’s neighbor u becomes a cluster-head and v receives the CH 

message from node u, v checks to see if wu is larger than the weight of v’s current cluster-

head (plus the parameter H, which equals 0 throughout this thesis as mentioned in the 

definitions portion of this section).  If it is, v joins u’s cluster.  If, on the other hand, v is a 

cluster-head such that it has more than K neighbors which are clusters (K also equals 0 as 

mentioned in the definitions portion of this section), the cluster-head with the smallest 

weight is determined so that it may give up its cluster-head position. 

On receiving CH(u); 
begin 

if (wu > wCluster-head + H) then  
send JOIN(v, u); 

 Cluster-head := u; 
send PARAMS(v.NT, v.AT, Cluster-head); 
if Ch(v) then  

Ch(v) := false 
 return 
 else if Ch(v) and { }( ) : ( )z v Ch z∈Γ >  K then 

 { }: min : ( ) ( )K zw w z v Ch z= ∈Γ ∧ ; 
 if wv > w then  

send RESIGN(w) 
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else  
{ }: max : ( )

z vw wx z Ch z>= ; 
 send JOIN(v, x); 

Cluster-head := x; 
send PARAMS(v.NT, v.AT, Cluster-head); 

 Ch(v) := false 
end 
 

Figure 3.20.  CH Message Receipt 

On receiving CTS(u): On receiving CTS(u) message, v checks to see if it is source 

u.  If it is, it begins transmission of the QoS traffic.  If not, and v has earmarked resources 

for u’s connection, the intermediate resource allocation that was done previously is 

finalized and the node table (v.NT) is updated to reflect the newly supported connection.  

v then transmits this update to the cluster-head. 

On receiving CTS(u); 
begin 
 if myID = u then 
  send QoS traffic 
 else if (PATH(u.rsrcs, dst) received ∧  counter ≠ 0) then 
  v.NT = v.NT ∪ u.rsrcs 
  send PARAMS(v.NT, v.AT, Cluster-head) 
 

Figure 3.21.  CTS Message Receipt 

 

On receiving JOIN(u, z): The procedure executed upon receipt of the JOIN(u, z) 

message is essentially the same as the original JOIN(u, v) handling procedure.  The only 

exception to this is the addition of the send PARAMS line executed after a node accepts a 

new cluster-head.  After having received the JOIN(u, z) message, the behavior of node v 

depends on whether it is a cluster-head or not.  If v is a cluster-head, it has to check for 
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one of two cases.  Node v checks if u is joining its cluster  (i.e., z = v) or if u belonged to 

its cluster and is now joining another cluster (i.e., z ≠ v).  In the first case, u is added to 

Cluster(v) and then sends its NT and AT to the cluster-head.  In the second case, u is 

removed from Cluster(v).  If v is not a cluster-head and u was its cluster-head v has to 

determine its role.  That is, it will join a new cluster-head x such that wx > wv if such an x 

exists.  Else it will become a cluster-head and ensure the K-neighborhood parameter is 

respected. 

On receiving JOIN(u, z); 
begin 
 if Ch(v) //if I am the cluster-head (i.e., if v is the cluster-head) 
  then if z = v then Cluster(v) := Cluster(v) { }u∪  // I (v) am u’s new CH  
   else if u ∈  Cluster(v) then Cluster(v) :=  Cluster(v) – { }u  
 else if Cluster-head = u then //if u was my CH and it is now making z its CH 
  if { }( ) : ( )z vz v w w Ch z∈Γ > ∧ ≠∅  

then begin 
     { }: max : ( )

z vw wx z Ch z>=  
     send JOIN(v, x): 
     Cluster-head := x 
     send PARAMS(v.NT, v.AT, Cluster-head) 
     end 

else begin   //else, I’m going to be the new cluster-head 
     send CH(v);// send cluster-head msg 
     Ch(v) := true;   //sent the cluster-head msg = TRUE 
     Cluster-head := v;  // cluster-head = ME 
     Cluster(v) := { }v ;  //set of nodes in my cluster is me 
     if { }( ) : ( )z v Ch z∈Γ > K then  

send RESIGN { }( )min : ( ) ( )K zw z v Ch z∈Γ ∧  
    end 
end 
 

Figure 3.22.  JOIN Message Receipt 
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On receiving RESIGN(w): The procedure executed upon receipt of the 

RESIGN(w) message is essentially the same as the original procedure.  The only 

exception to this is the addition of the send PARAMS line which is executed after a node 

joins a new cluster.  After having received the RESIGN(w) message, node v checks if wv 

≤ w.  If this condition is met, v gives up its cluster-head position and joins the nearest 

cluster-head with the larges weight.  Once v has received the RESIGN message and 

confirmed the need for its resignation, it sends its NT (supported connections list, as well 

as the available resources) to the new cluster-head. 

On receiving RESIGN(w); 
begin 
 if Ch(v) and wv ≤ w then begin 
    { }: max : ( )

z vw wx z Ch z>= ; 
    send JOIN(v,x); 
    Cluster-head := x; 
    send PARAMS(v.NT, v.AT, Cluster-head) 
    Ch(v) := false 

end 
end 

Figure 3.23.  RESIGN Message Receipt 
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3.4 Summary 

This chapter presents key design features of the EFDCB routing protocol.  The 

EFDCB protocol is the unification of the modified GDMAC and FDCB algorithms which 

uses CFSR for QoS routing.  The approach of EFDCB is to implement a cluster-head 

model to mitigate connection failures.  This cluster-head model employs a cluster state 

knowledge sharing process which has the fundamental objective of making the cluster-

head aware of current supported QoS connections in the cluster.  The cluster state 

knowledge is also shared with all cluster members to assist in the event of a cluster-head 

failure.  Additionally, CFSR allows each node in the EFDCB network to be aware of the 

complete network state with low bandwidth impact.  EFDCB is different than FDCB 

since link failures can now be handled locally instead of rerouting the traffic from the 

source and QoS traffic can now be routed with lower packet transmission delay.  The 

EFDCB fault-tolerant method differs from Chen and Nahrstedt’s [26] work in that here a 

clustered approach is used which helps to avoid the limitation of Chen and Nahrstedt’s 

repair algorithm.  Specifically, EFDCB doesn’t require that the predecessor of the failed 

node be capable of reaching the failed node’s successor – this limitation of Chen and 

Nahrstedt’s repair algorithm was discussed in Section 2.7.  Consequently, EFDCB 

protocol presents an innovative solution to fault-tolerance in the QoS supporting 

MANET. 

In summation, the local technique used by EFDCB is expected to be more 

efficient than FDCB’s global paradigm at handling failures.  In order to contrast these 

competing methods, Chapter Four presents the concerned performance metrics, 
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evaluation technique, experimental design and data analysis.  Finally, Chapter Four 

provides an interpretation of the results. 
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IV. Analysis and Results 

4.1 Chapter Overview 

This chapter documents a study of how the rate of node failures affect recovery 

time, number of dropped packets, throughput and amount of sustainable flow bandwidth 

for the EFDCB and FDCB protocols.  The experimental design developed for this study 

describes 22 experiments.  These experiments are aimed at generating data which 

provides insight to the competing protocols’ ability to handle link failures. 

The goal of the data analysis is to establish the performance of the EFDCB 

protocol compared to its predecessor FDCB when subjected to a network experiencing 

random node failures of varying failure rates.  Since the hypothesis is that EFDCB will 

provide efficient fault-tolerance over FDCB in the failure prone mobile environment, the 

analysis shows how the key metrics are affected by network connection failures.  

Analysis of the data collected from the experiments is presented in this chapter.  Finally, 

the data is interpreted and conclusions are drawn. 

4.2 System Boundaries 

This research does not focus on the ability of the EFDCB protocol to lower 

resource requirements [22]; rather, it focuses on the EFDCB protocol’s ability to lower 

broken connection recovery time for QoS traffic.  The most vital component of the 

system is the QoS routing protocol.  Nevertheless, since connection recovery time 

improvement is the focus of this research, the component under test (CUT) is the fault-

tolerant portion of the EFDCB system. 
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Figure 4.1.  An Illustration of the EFDCB Protocol 

Given the focus of this research, the intent is not to implement all of the 

developed EFDCB protocol, but the salient features required to determine if the EFDCB 

QoS routing algorithm provides efficient QoS route recovery.  For this reason, the 

clustering portion of EFDCB algorithm is ‘boot-strapped’.  That is, it is assumed that the 

MANET is already clustered when the system initializes.  Further, since clustering is 

hardcoded, node i moving out of communication range of node j is simulated by forcing i 

to fail.  CFSR is also boot-strapped in this simulated system by using a (centralized) QoS 

routing algorithm which employs source routing based on a single constraint, namely 

bandwidth.  The algorithm models traffic requests as multicommodity flows, discussed in 

Section 2.2.5, to determine if the traffic bandwidth demands can be satisfied.  Note that 

with this routing model all nodes have complete network state knowledge as with CFSR; 

however, since network traffic is modeled as multicommodity flows, traffic flows (a flow 

of data from a source to a destination) can be split.  Simulations were run on ns2 using a 

combination of custom middleware application agents and a custom routing module to 
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emulate EFDCB.  For simplicity, a wired scenario was used in ns2.  The H-MANET is 

simulated by using a method in which lower bandwidth is used for routing control and 

beacon packets (i.e., 54Mbps omni-directional links) and higher bandwidth (i.e., 200-

100Mbps directional links) for data traffic.   The idea is to simulate each node having a 

higher bandwidth interface for every node it can communicate with via lower bandwidth 

wireless technology.  Mobility was emulated by causing links to fail or recover at 

appropriate times.  Similarly, failures were simulated by causing nodes in the system to 

go off-line at appropriate times. 

4.3Workload 

The system workload is the rate at which nodes in the network fail.  Hence, a 

different node failure rate value is used for each group of simulations of the 

experimentation.  The particular node that fails is chosen randomly.  The number and 

type of QoS connection requests made by each source node is kept constant (as are the 

number of source-destination pairs and length of connections) during the simulations; 

however, these values are changed between experimental phases.  The intra-cluster 

bandwidth is also altered between experimental phases.  This is explained in more detail 

in the experimental design discussion.  Since the EFDCB algorithm is tested against the 

original FDCB protocol, the same workloads are used with both algorithms. 

4.4 Performance Metrics 

The metrics for measuring system performance in this analysis are connection 

recovery time, number of dropped packets, throughput, and amount of sustainable flow 
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bandwidth.  With these data the comparative strengths and weaknesses of these 

competing algorithms can be determined.  Connection recovery time is defined as the 

interval of time required to reestablish a failed connection from the moment data traffic 

stops.  More specifically, the recovery time begins the moment the connection fails and 

ends when the destination receives the next data packet.  This time interval measures how 

efficient the routing algorithms are at repairing broken links.  With this knowledge, 

conclusions can be made about how well the offered traffic load is serviced.  Traffic is 

expected to be serviced at a higher rate for the EFDCB protocol than FDCB since any 

connection interrupts should be minimized.  The connection recovery time metric 

supplies evidence to support whether the EFDCB protocol can provide local fault-

tolerance; thereby, offering better response in the face of connection failures.  In other 

words, if the EFDCB protocol is more efficient at handling connection failures, it will 

provide lower connection recovery time than FDCB.   

Testing focused on the amount of sustainable flow bandwidth will illustrate the 

developed protocol's ability to maintain flow demands given network failures over the 

global rerouting alternative.  If EFDCB is only allowed to perform reconnections locally 

within the cluster, then in cases where the cluster cannot support the failed flow due to 

available resource limitations EFDCB will have to determine which flows to support and 

which to terminate (or drop).  By looking at EFDCB’s ability to maintain flow demands 

while removing its ability to reroute from the source, insight about EFDCB’s efficiency is 

obtained.  Data collected on the number of dropped packets and throughput is critical in 

determining the routing protocol’s ability to provide the primary task of QoS. 
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4.5 Parameters 

4.5.1 System 

Due to the distributed nature of the EFDCB, it is resilient to many of the 

parameters which affect its predecessor.  The EFDCB fault-tolerant protocol either has 

the resources necessary to repair the failed connection or it does not.  For this reason, the 

set of resource values (in this case bandwidth) under consideration when calculating the 

feasible paths is a parameter which affects the EFDCB.  Also, the cluster topology is a 

parameter since this set of edges must be considered when calculating the feasible paths.  

When considering the FDCB protocol, many more parameters affect the system since this 

particular failure handling algorithm is centralized.  One is the distance from the source 

to the destination.   Referring back to the discussion of the failure cases in Section 

3.3.2.2, for cases 1 and 2, using FDCB (the case where n5 is defunct in Figure 3.5) the 

message notifying the source of the failed connection has to make its way from the 

cluster-head (n8) to the source (n0).  Further, during route negotiation messages must 

travel from the source to each cluster of which resources are required.  This 

communication overhead contributes considerably to the overall performance of the 

FDCB system. 

4.5.2 Workload 

By manipulating node failure rate it is possible to illustrate the FDCB algorithm’s 

inability to efficiently operate through failures. 

The primary intent is to alter the network by removing the supporting nodes (that 

is, the nodes supporting the QoS connections).  Manipulating these supporting nodes has 
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the effect of increasing network dynamics; providing proper stimuli for the 

experimentation.  The increase in failed connections will demonstrate whether or not the 

associated algorithm provides efficient protection in such challenging situations.  

Manipulating parameter has a major effect on the overall network bandwidth, queuing 

delay, mean path propagation delay, number of packets in the network, mean packet 

arrival rate, as well as other network parameters; however, the primary outputs of 

interested in here are connection recovery time, number of dropped packets, throughput 

and amount of sustainable flow bandwidth. 

4.6 Failure Rate 

Consider a large QoS supporting MANET in which ¾ of the nodes are filling a 

supporting role – that is ¾ of the nodes have no data to send but provide connectivity 

between the other source-destination pairs – while the other ¼ transmit/receive data.  If 

the supporting nodes are gradually removed from the network, the number of possible 

connections to send data decreases.  Further, since each intermediate node has a 

particular set of QoS capabilities, removing one node could prevent a source from 

transmitting its data (e.g.,  the removed node was the only node which could support the 

QoS requirement).  In this experimentation, nodes are randomly removed and then, after 

200 milliseconds, returned to the network once again.  With this method, there is no 

concern for running out of network resources as long as the rate at which nodes return is 

greater than or equal to the rate nodes are removed (or the simulation is run for a 

sufficiently short period of time).  This allows an experiment to run for any desired length 
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of time.  The MANET node failure rate is studied at 11 levels.  The exact levels for this 

factor are shown in Table 4.1. 

Table 4.1.  Experimental Design for the First Phase of Experiments  
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2 50 20 6 400 100 10 

3 60 16.70 6 400 100 10 

4 70 14.29 6 400 100 10 

5 80 12.5 6 400 100 10 

6 90 11.11 6 400 100 10 

7 100 10 6 400 100 10 

8 150 6.67 6 400 100 10 

9 200 5 6 400 100 10 

10 250 4 6 400 100 10 

FDCB 
(or EFDCB) 

11 300 3.33 6 400 100 10 

  



 

4-8 

Table 4.2 illustrates the experimental design aimed at sustained flow bandwidth response.  

For this set of experiments the network is initialized such that the available network 

bandwidth is extremely small.  Also, EFDCB is not allowed to reroute from the source.  

In other words, the desire is to saturate the network so that EFDCB will quickly run out 

of resources and be forced to drop flows.  With this idea in mind, all cluster links are 

reduced to half the original bandwidth.  Also, the average bandwidth per flow is 

increased by increasing the number of source destination pairs as well as the demand for 

this additional traffic.  Note that the average cluster bandwidth is calculated as the 

average bandwidth available from the incoming gateway node to the outgoing gateway 

node.  Also note that FDCB is run under the same load and topology characteristics as 

just described. 
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Table 4.2.  Experimental Design for the Second Phase of Experiments 
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14 60 16.70 12 200 125 10 
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16 80 12.5 12 200 125 10 

17 90 11.11 12 200 125 10 

18 100 10 12 200 125 10 

19 150 6.67 12 200 125 10 

20 200 5 12 200 125 10 

21 250 4 12 200 125 10 

FDCB 
(or EFDCB) 

22 300 3.33 12 200 125 10 

 

4.7 Evaluation Technique 

The evaluation technique used in this analysis is simulation.  This technique 

affords the most commonsense approach to test the proposed hypothesis and therefore 

achieve the stated goal of showing that the developed MANET QoS routing algorithm is 
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fault-tolerant.  Moreover, since the source code of the simulation tool to be used (ns2 

[18]) is readily available, this setting is the most likely environment to facilitate 

successful implementation of the desired EFDCB (and FDCB) functionality. 

Using ns2, the system is configured as shown in Figure 4.2.  Each node has a 

simulated best-effort omni-directional interface (used for cluster maintenance purposes) 

as well as a QoS supporting directional interface.  At simulation start, all QoS links have 

the ability to support any one of the requested QoS connections; however, once a QoS 

connection has been established the associated intermediate nodes may or may not have 

the bandwidth available to support additional QoS requests.  The arrows indicate gateway 

node and potential gateway node connections.  Note that the clusters are predefined upon 

simulation initialization. 
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Figure 4.2.  Experimental Network Architecture 

Once a source-destination connection has been established, and the source begins 

to transmit the data, an intermediate node is randomly removed.  This forces the routing 

algorithm to either re-route the traffic from the source (FDCB) or attempt to re-establish 
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the connection (EFDCB) in the cluster associated with the removed node.  In the case 

where the source and destination are separated only by a single node, it is likely that the 

local connection re-establishment option will be just as costly (in terms of recovery time) 

as having the source recalculate a route.  As more nodes and clusters are added between 

the source and destination, the local algorithm will prevail in terms of time necessary to 

re-establish the path. 

4.8 Experimental Design 

Illustrating that the EFDCB algorithm is more fault-tolerant than the FDCB 

algorithm does not require a large number of complex experiments.  In fact, a few well-

formed experiments can achieve this task.  The key is to demonstrate that the EFDCB 

algorithm is more expeditious at connection re-establishment.  By repeatedly removing 

random nodes from the set of nodes supporting the source-destination connections (and 

periodically adding the removed nodes back to the network) the connection re-

establishment procedure is initiated and the connection failure handling of the protocol 

under test is exercised.  The experimental design for this study is illustrated in Table 4.1 

and Table 4.2.  Figure 4.2 illustrates the topology configuration of the experiments.  All 

experiments are performed on both FDCB and EFDCB. 
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4.9 Preliminary Testing 

Initial testing on the effects of distance between source-destination pairs for a 

constant failure rate proves that this is a main effect on performance for the FDCB 

algorithm – as expected. 

Table 4.3.  Initial Experimentation Based on Src-Dst Hop Distance 

 
Experiment 

 
Number of Hops

 
Number of Runs 

1 3 10 
2 4 10 
3 5 10 
4 6 10 
5 7 10 
6 8 10 
7 9 10 

 

These beginning tests show that the EFDCB system is minimally affected by this 

parameter.  Figure 4.3 illustrates the results of these early tests.  FDCB appears to display 

a significant growth in mean recovery time per failure response as hop counts increase.  

Experiments investigating effects of this parameter on EFDCB and FDCB were not 

explored further due to the costly process of topology generation; however, these opening 

experiments help to confirm the intuition that distance has a significant effect on the 

global nature of FDCB. 

Additional preliminary testing was done to evaluate the failure rate at which the 

competing algorithms begin to be unsuccessful – assuming instantaneous failure 

discovery for both algorithms.  The threshold failure rate at which FDCB begins to break 

down is approximately 25 failures per second (1 node failure every 40 milliseconds).  



 

4-14 

EFDCB continues to function properly up to 100 failures per second (1 node failure every 

10 milliseconds).  The limiting factor in this line of testing is the maximum recovery 

time.  That is, if the length of time required to repair a broken link is longer than the 

interval between new broken links, the algorithm does not perform updates fast enough to 

have an accurate view of the required network state.  This is similar to the concept of 

combinatorial stability.  For FDCB this maximum recovery time is dependent upon the 

network size.  For EFDCB the maximum recovery time is dependent upon the cluster size 

– a fraction of the total network.  The main point here is that in both cases maximum 

recovery time is a consequence of network topology. 
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Figure 4.3.  Recovery Time versus Number of Hops 

4.10 Results of Simulations 

Figure 4.4 illustrates the mean number of failures for each failure rate for each 

algorithm.  In this graph it can be seen that 9 out of 11 times the EFDCB algorithm 
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encountered more average failures than FDCB.  Therefore the FDCB algorithm has a 

slight advantage in terms of offered load.  That is, the EFDCB algorithm on average must 

handle more network failures than its predecessor during this experimentation.  This is 

completely a product of the randomness of the failures. 
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Figure 4.4.  Mean Failures versus Failure Rate 

The graph below (Figure 4.5) shows a raw data plot of recovery time versus 

failure rate for the failure rate values shown in Table 4.1.  Recovery time is calculated as 

the sum of the individual recovery times (as defined in Section 3.6) of each reestablished 

connection for a given single experiment.  The graph shows that both algorithms appear 

to have linear responses to linear increases in the failure rate.  The data further 

demonstrates a spreading trend for FDCB as the rate of failures increase.  This suggests a 

linear positive correlation where the variation of recovery time depends on the rate of 

failures.  Also, note that in general much more variation in recovery time is recorded for 
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FDCB than for EFDCB.  This makes sense since recovery time for FDCB is also affected 

by the number of hops between the cluster-head managing the failed node and the sources 

employing that failed node.  That is, the farther this distance (in terms of hops), the more 

packets must be sent for route negotiation with intermediate clusters and more 

transmitted packets means more processing and propagation time. 

The scatterplot of mean recovery time versus failure rate (Figure 4.6) 

demonstrates an obvious linear relationship between the two variables.  Average recovery 

time is calculated as the average time spent handling failures per experiment (i.e., for the 

1 node failure per 40ms experiment, run 10 times, the average recovery time is 

calculated, for the 1 node failure per 50ms experiment, run 10 times, the average 

recovery time is calculated and so on).  Note that for every failure rate tested, EFDCB has 

a faster recovery time than FDCB by more than a factor of two. 
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Figure 4.5.  Raw Data Plot of Recovery 

Time versus Failure Rate 
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Figure 4.6.  Mean Recovery Time versus 

Failure Rate 
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 The mean recovery time fitted line plots for FDCB and EFDCB are shown in 

Figure 4.7 and Figure 4.8 respectively.  The 80% prediction intervals capture the mean 

values indicating that these mean recovery time models fit the data well.  The prediction 

interval provides a range within which one can expect the predicted response for a single 

sample to fall.  Note that FDCB has more than twice the slope of EFDCB and hence more 

than twice the rate of increase for mean recovery time as the failure rate increases. 
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Figure 4.7.  Fitted Line Plot for FDCB 
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Figure 4.8.  Fitted Line Plot for EFDCB 

Mean Recovery Time versus Failure Rate 

 

The raw data illustrating the effects of failure rate on number of dropped packets 

is shown in Figure 4.9.  The trend seen here is similar to that noted for recovery time; 

however, the relationship between the two variables appears to be less linear. 
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Figure 4.9.  Raw Data Plot of Dropped 

Packets versus Failure Rate 
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Figure 4.10.  Mean Dropped Packets 
versus Failure Rate 
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Figure 4.11.  Mean Percentage of Dropped Packets versus Failure Rate 

 
The scatterplot of mean dropped packets versus failure rate (Figure 4.10) as well 

as the fitted line plot (Figure 4.12) provide additional evidence to support the notion of 

inconsistency in true linearity of dropped packet response to failure rate input for FDCB.  

The fitted line plots shows a much wider prediction interval is necessary to capture the 

range within which one can expect the predicted response for a single sample to fall for 
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FDCB compared to EFDCB with 80% confidence.  The difference in prediction interval 

ranges is even more noticeable if one notes that the maximum value for the y axis of the 

FDCB fitted line plot is more than twice that of the EFDCB fitted line plot.  Further, 

Figure 4.12 shows that the prediction interval fails to capture one particular mean 

dropped packet value for FDCB.  This deviation from consistent linearity for FDCB is 

most likely due to interaction caused by variations in the distance between the cluster-

head where the failed node is located and any source directly impacted by the failed node.  

That is, the greater the distance (number of hops) between these two nodes, the more 

likely QoS packets will be dropped.  This is because as distance increases the time 

required for the source to realize the node in its QoS path has failed also increases.  On 

the other hand, EFDCB does give the impression of strong linear dropped packet 

response to linear increases in failure rate.  This makes sense since EFDCB is somewhat 

resistant to variations in distance between the cluster-head associated with the failed node 

and the sources using resources on that failed node.  Similar to the mean recovery time 

results, for every failure rate tested, EFDCB has less mean dropped packets than FDCB 

by more than a factor of two. 
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Figure 4.12.  Fitted Line Plot for FDCB 
Mean Dropped Packets vs Failure Rate 
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Figure 4.13.  Fitted Line Plot for EFDCB 
Mean Dropped Packets vs Failure Rate 

 
The throughput versus failure rate results (Figure 4.14 and Figure 4.15) show that 

both algorithms appear to have a general linear response.  Again the deviations from 

concise linearity can be attributed to the effects of distance interacting with the failure 

rate.  Figure 4.16 shows the percentage of optimal throughput versus failure rate.  

Percentage of optimal throughput is calculated as: 

realized throughputPercentageof optimal throughput
throughput without failures

= . 

 The mean throughput for EFDCB never falls below the 90% threshold; however, FDCB 

dips down to 79% of the optimal throughput. 
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Figure 4.14.  Raw Data plot of Throughput 
versus Failure 
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Figure 4.15.  Mean Throughput versus 

Failure Rate 
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Figure 4.16.  Percentage of Optimal Throughput versus Failure Rate  

 
 The bar chart of sustained flow bandwidth versus failure rate (Figure 4.17) shows 

that with a saturated network the “pure” local protocol (EFDCB with rerouting 

functionality removed in this case) is able to compete effectively with the global 

rerouting algorithm for failure rates up to 6.7 failures per second.  Beyond 6.7 failures per 

second, the global rerouting algorithm (FDCB) is significantly better at finding new 

routes when link failures occur.  The EFDCB protocol is designed to invoke global 
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recovery in cases where the flow is no longer sustainable by local resources.  The bottom-

line is that EFDCB obtains the advantages of both the “pure” global and the “pure” local 

recovery methods. 

It is interesting to note that for 16.7 node failures per second and above, sustained 

flow bandwidth remains constant.  This is due to the criteria used to pick the random 

node for failure.  The algorithm used to fail nodes first checks to see if the failure of the 

node will render the flow irreparable.  That is, if removal of a cluster node makes 

connectivity through the cluster impossible, no node will be removed in the cluster; 

therefore, the upper bound on the worst case mean sustained flow bandwidth is less than 

or equal to the sum of available bandwidth through the clusters – without breaking 

connectivity through the clusters.  It is worth noting that the method implemented to 

arbitrate between the set of flows to support and the set of flows to drop involves picking 

the set that optimizes the sustained flow bandwidth. 
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Figure 4.17.  Sustained Flow Bandwidth versus Failure Rate  
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4.11 Summary 

Preliminary testing revealed that distance between source-destination pairs is a 

primary driver on the recovery time response for FDCB.  More precisely, the distance 

between the cluster-head of the failed node and sources employing resources on the failed 

node has a strong effect on recovery time response for FDCB.  This was an expected 

result; however, demonstrating this in simulation aided in reasoning about irregularities 

in predicted responses for FDCB.  That is, difficulties in generating a sufficiently 

accurate linear model (80% confidence) for dropped packets and throughput for FDCB 

are attributed to the interaction of distance with failure rate.  EFDCB is much more 

predictable since this interaction does not present a problem for this local algorithm. 

The recovery time response for increasing failure rates showed that EFDCB is 

predictably twice as fast as FDCB for every failure rate tested.  The dropped packet 

response to increasing failure rates showed that EFDCB suffers from less dropped 

packets than FDCB by more than a factor of two.  This makes sense since recovery time 

showed a similar result.  The throughput response to increased failure rate demonstrates 

that EFDCB drops to just above 90% of the optimal throughput at 25 failures per second.  

FDCB goes down to 79% of the optimal throughput at this same failure rate. 

Tests investigating the effect of failure rate on sustained flow bandwidth reveal 

that a pure local algorithm is less effective than FDCB for failure rates equal to or greater 

than 6.7 failures per second.  Although the local algorithm performs a local optimization 

on the sustainable flow bandwidth when adjudicating what flows to support, since FDCB 

has the ability to reroute the traffic from the source it can find routes not available to this 
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pure local procedure.  The take away from this line of testing is that although a local 

fault-tolerant algorithm provides significant recovery and QoS disruption time 

improvement, to be effective in all cases, it must be coupled with an efficient rerouting 

alternative for situations where required local resources are not available.  EFDCB 

incorporates this functionality. 

For an example of how the captured metrics relate to QoS, consider the maximum 

dropped packet rate tolerable for VoIP traffic.  First note that this value is dependent 

upon the Coder/Decoder (codec) used.  RFC3714 states that “voice quality begins to 

deteriorate for many codecs around a 10% drop rate”.  Figure 4.11 shows that for FDCB 

this occurs around 10 failures per second.  For EFDCB this happens around 22 failures 

per second.  This clearly shows EFDCB is more likely to provide the required QoS for 

this particular application given the challenged network tested here. 

The experimental design presented in this chapter described 22 experiments 

aimed at illustrating the EFDCB protocol’s ability to handle fault-tolerance.  The 

interpreted results showed that EFDCB excels over FDCB at this challenge which is the 

goal of this work.  The next chapter uses these results to highlight the conclusions and 

future work. 
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter discusses and concludes the implications of this thesis.  The 

conclusions focus on the benefits of local fault-tolerance in QoS supporting mobile 

wireless networks.  Following the conclusions, future research items are discussed.�

5.2 Conclusions of Research 

This work developed a distributed fault-tolerant routing protocol for QoS 

supporting hybrid mobile ad hoc networks with the aim of mitigating QoS disruption 

time when network failures occur.  In Chapter One, the problem considered was 

introduced along with some background and the focus of this research.  Chapter Two 

presented introductory material on the QoS problem as it applies to wired networks and 

built on this with the topic of QoS in the MANET.  Chapter Two also covered an 

overview of literature that supports key design decisions made in development of the 

distributed fault-tolerant cluster based QoS protocol.  Different solution methods that 

exist in the literature were discussed as well.  In Chapter Three, the extended-Fully 

Distributed Cluster Based protocol was demonstrated and described.  In Chapter Four, an 

experimental design was developed, the collected data was analyzed and conclusions 

based on the discovered trends were annotated. 

This thesis demonstrates that the traditional method of rerouting QoS traffic from 

the source given a link failure yields serious negative QoS disruption consequences; 

however, an efficient local fault-tolerant algorithm can significantly mitigate the time 
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required to reestablish the connection.  The ultimate advantage gained by mitigating the 

time to reestablish connections is a reduction in QoS disruption. 

The preliminary testing results from Chapter Four show that a pure rerouting 

algorithm exhibits significant growth in recovery time as the distance between the source 

and destination increases.  This makes sense when one considers the process of message 

exchanges that must occur for a source to reroute its traffic.  More specifically, once the 

cluster-head associated with the failed node realizes a node has failed it sends a ‘failed 

node’ message to any source which was using resources on the failed node.  Hence, the 

elapsed time between the moment the node fails to the time the source is notified equal to 

the time required for the cluster-head to notice the failure plus the time for the failed node 

message to propagate to the source.  At this point, the source must determine a new 

feasible route.  Upon determining a new route, the source must negotiate its demands 

with the cluster-heads of all clusters that have resources the sources desires to use and 

then wait for responses from these cluster-heads.  It’s easy to see that an increase in the 

number of clusters between the source and destination will have a significant impact on 

the time required to complete the necessary negotiations.  The recovery time results 

showed that EFDCB is more than two times faster than the global rerouting alternative 

for all failure rates tested.  The dropped packet and throughput results reflected similar 

outcomes. 
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5.3 Recommendations for Future Research 

This early work is part of a bigger effort to enable robust H-MANET 

functionality, the critical extension required to empower the GIG with the capabilities 

envisioned by current civilian and military leadership, as discussed in Chapter One.  

EFDCB possess the ability to cluster mobile nodes, route QoS traffic, and handle link 

failures.  For the collection of experiments performed here, clustering and routing were 

bootstrapped.  The focus was on EFDCB’s ability to handle link failures.  Having 

demonstrated efficient fault-tolerance, the next logical step in experimentation of EFDCB 

is the clustering processes.  This makes sense since the clustered architecture is the 

fundamental structure on which all other portions of the protocol are built.  That is, the 

failure handling, as well as the routing protocol, requires this clustered wireless network 

architecture in order to be functional.  With the clustering protocol implemented, much 

more comprehensive mobility testing (e.g., effects of cluster size on fault-tolerance and 

routing) can be performed.  This mobility testing is vital if it is to be shown that EFDCB 

makes a significant contribution to the overall hybrid mobile wireless network effort. 
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